无定形固体
降级(电信)
化学
激进的
猝灭(荧光)
分解
光化学
吸附
羟基自由基
化学工程
无机化学
有机化学
荧光
物理
电信
计算机科学
工程类
量子力学
作者
Xu Zhang,Daniel Dianchen Gang,Xiaobo Lei,Tiejun Wang,Qiyu Lian,William E. Holmes,Ling Fei,Mark E. Zappi,Hong Yao
标识
DOI:10.1016/j.envres.2022.113964
摘要
In this study, activation of peroxymonosulfate (PMS) by amorphous FeOOH to degrade sulfamethoxazole (SMX) was investigated. The amorphous FeOOH showed a better performance in the decomposition of PMS and the degradation of SMX than the crystallized α-FeOOH and β-FeOOH. The quenching experiments and EPR measurements suggested that the mechanism of PMS activation by amorphous FeOOH was mainly the surface-bound radicals (●OH and SO4●-). Basically, the surface-bound ●OH radicals were the dominate reactive oxide species in this system, which were mainly generated via the decomposition of amorphous FeOOH-PMS complexes. The degradation of SMX was significantly inhibited with the presence of H2PO4−, and this adverse impact was negligibly affected by the increase of H2PO4− concentration, implying that the inhibition of SMX degradation was caused by competitive adsorption. Consequently, the Fe–OH bonds on the amorphous FeOOH were proposed as the reactive sites for forming amorphous FeOOH-PMS complexes. Besides, the amorphous FeOOH showed a better performance in the degradation of SMX in the acid conditions than that in the base conditions due to the surface charge of amorphous FeOOH. More importantly, the reduction efficiency of Fe(III) was significantly enhanced due to the excellent conductivity of amorphous FeOOH.
科研通智能强力驱动
Strongly Powered by AbleSci AI