The reliability of categorical triple collocation for evaluating soil freeze/thaw datasets

范畴变量 排名(信息检索) 均方误差 环境科学 水准点(测量) 比例(比率) 统计 计算机科学 样本量测定 航程(航空) 数学 遥感 数据挖掘 人工智能 材料科学 地图学 地质学 复合材料 地理
作者
Heng Li,Linna Chai,Wade T. Crow,Jianzhi Dong,Shaomin Liu,Shaojie Zhao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:281: 113240-113240 被引量:10
标识
DOI:10.1016/j.rse.2022.113240
摘要

Seasonal soil freeze/thaw (FT) state transition plays a critical role in the range of ecosystem, hydrological and biogeochemical processes. A thorough and large-scale validation of remote-sensed or model-based FT products is therefore quite important. Previous validation studies have applied categorical triple collocation (CTC) as a cross-validation method to estimate the relative performance ranking of various FT datasets, including in situ observations. While CTC has proven useful for qualitatively evaluating FT datasets, quantitative estimates of classification accuracy, which has not yet been assessed against direct validation results, would be even more valuable. To fill this gap, we compare CTC estimated performance rankings and quantitative classification accuracies with those obtained from dense soil temperature and sparse surface temperature observations from April 2015 through December 2019. CTC estimated classification accuracies are found to be strongly correlated (r > 0.927) with dense ground observations, along with very low bias (< 0.038) and RMSE (< 0.086). However, the bias and RMSE of CTC-estimated freeze accuracies are significantly inflated when sparse surface temperatures are used instead as the benchmark. Small errors are found with low absolute values (<0.317) of CTC-estimated class imbalance and a sample size of at least 365. CTC can generally provide the correct performance ranking for each product within a triplet - with low risk of incorrectly ranking all three products. In addition, a sample size of 10–160 is adequate for CTC to provide the correct ranking for the highest- or lowest-ranked product. This improves our knowledge and understanding of the reliability of the CTC method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿诺完成签到,获得积分10
刚刚
ChatGPT发布了新的文献求助10
1秒前
Susan发布了新的文献求助10
1秒前
Leo_Sun完成签到,获得积分10
1秒前
sagacity发布了新的文献求助10
3秒前
LordRedScience完成签到,获得积分10
5秒前
bbll完成签到,获得积分10
5秒前
lx完成签到,获得积分10
6秒前
书岩完成签到,获得积分10
6秒前
7秒前
稻穗完成签到 ,获得积分10
8秒前
满意的寒凝完成签到 ,获得积分10
8秒前
英姑应助舒心怀寒采纳,获得10
9秒前
10秒前
12秒前
麻辣香锅发布了新的文献求助10
12秒前
隐形曼青应助111采纳,获得10
12秒前
科研通AI6.1应助孳孳采纳,获得10
15秒前
15秒前
Cam_GuoCH完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
kkkl发布了新的文献求助10
17秒前
舒心怀寒完成签到,获得积分10
18秒前
19秒前
jsw发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助30
19秒前
evergarden完成签到,获得积分10
19秒前
小高完成签到 ,获得积分10
20秒前
kk发布了新的文献求助10
20秒前
20秒前
华仔应助Kisace采纳,获得10
20秒前
Edward发布了新的文献求助10
21秒前
21秒前
英俊的铭应助成就的书包采纳,获得10
22秒前
22秒前
顺利的尔冬完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735371
求助须知:如何正确求助?哪些是违规求助? 5360228
关于积分的说明 15329581
捐赠科研通 4879569
什么是DOI,文献DOI怎么找? 2622080
邀请新用户注册赠送积分活动 1571231
关于科研通互助平台的介绍 1528068