The reliability of categorical triple collocation for evaluating soil freeze/thaw datasets

范畴变量 排名(信息检索) 均方误差 环境科学 水准点(测量) 比例(比率) 统计 计算机科学 样本量测定 航程(航空) 数学 遥感 数据挖掘 人工智能 材料科学 地图学 地质学 复合材料 地理
作者
Heng Li,Linna Chai,Wade T. Crow,Jianzhi Dong,Shaomin Liu,Shaojie Zhao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:281: 113240-113240 被引量:10
标识
DOI:10.1016/j.rse.2022.113240
摘要

Seasonal soil freeze/thaw (FT) state transition plays a critical role in the range of ecosystem, hydrological and biogeochemical processes. A thorough and large-scale validation of remote-sensed or model-based FT products is therefore quite important. Previous validation studies have applied categorical triple collocation (CTC) as a cross-validation method to estimate the relative performance ranking of various FT datasets, including in situ observations. While CTC has proven useful for qualitatively evaluating FT datasets, quantitative estimates of classification accuracy, which has not yet been assessed against direct validation results, would be even more valuable. To fill this gap, we compare CTC estimated performance rankings and quantitative classification accuracies with those obtained from dense soil temperature and sparse surface temperature observations from April 2015 through December 2019. CTC estimated classification accuracies are found to be strongly correlated (r > 0.927) with dense ground observations, along with very low bias (< 0.038) and RMSE (< 0.086). However, the bias and RMSE of CTC-estimated freeze accuracies are significantly inflated when sparse surface temperatures are used instead as the benchmark. Small errors are found with low absolute values (<0.317) of CTC-estimated class imbalance and a sample size of at least 365. CTC can generally provide the correct performance ranking for each product within a triplet - with low risk of incorrectly ranking all three products. In addition, a sample size of 10–160 is adequate for CTC to provide the correct ranking for the highest- or lowest-ranked product. This improves our knowledge and understanding of the reliability of the CTC method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二二二发布了新的文献求助10
刚刚
开心的傲安完成签到,获得积分20
刚刚
麻麻完成签到,获得积分20
刚刚
DDTT完成签到,获得积分10
1秒前
霸气的念云完成签到,获得积分10
1秒前
Orange应助欢呼小蚂蚁采纳,获得10
1秒前
1秒前
SQ完成签到,获得积分10
2秒前
2秒前
飞跃海龙完成签到 ,获得积分10
2秒前
ufuon发布了新的文献求助10
3秒前
momo完成签到,获得积分10
4秒前
赘婿应助二二二采纳,获得10
4秒前
JamesPei应助HongJiang采纳,获得10
4秒前
clarkq完成签到,获得积分10
5秒前
orixero应助LIU采纳,获得10
5秒前
经法发布了新的文献求助10
5秒前
不吃橘子完成签到,获得积分10
5秒前
Cheryy完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
ding应助哈哈哈哈采纳,获得10
7秒前
Draeck发布了新的文献求助10
7秒前
kingwhitewing发布了新的文献求助10
7秒前
8秒前
clarkq发布了新的文献求助10
8秒前
8秒前
GGZ完成签到,获得积分10
8秒前
15860936613完成签到 ,获得积分10
8秒前
可爱的函函应助a方舟采纳,获得10
8秒前
9秒前
ee关闭了ee文献求助
9秒前
9秒前
10秒前
Hungrylunch给woshiwuziq的求助进行了留言
10秒前
传奇3应助cruise采纳,获得10
10秒前
艺玲发布了新的文献求助10
10秒前
10秒前
我是老大应助sun采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678