The reliability of categorical triple collocation for evaluating soil freeze/thaw datasets

范畴变量 排名(信息检索) 均方误差 环境科学 水准点(测量) 比例(比率) 统计 计算机科学 样本量测定 航程(航空) 数学 遥感 数据挖掘 人工智能 材料科学 地图学 地质学 复合材料 地理
作者
Heng Li,Linna Chai,Wade T. Crow,Jianzhi Dong,Shaomin Liu,Shaojie Zhao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:281: 113240-113240 被引量:10
标识
DOI:10.1016/j.rse.2022.113240
摘要

Seasonal soil freeze/thaw (FT) state transition plays a critical role in the range of ecosystem, hydrological and biogeochemical processes. A thorough and large-scale validation of remote-sensed or model-based FT products is therefore quite important. Previous validation studies have applied categorical triple collocation (CTC) as a cross-validation method to estimate the relative performance ranking of various FT datasets, including in situ observations. While CTC has proven useful for qualitatively evaluating FT datasets, quantitative estimates of classification accuracy, which has not yet been assessed against direct validation results, would be even more valuable. To fill this gap, we compare CTC estimated performance rankings and quantitative classification accuracies with those obtained from dense soil temperature and sparse surface temperature observations from April 2015 through December 2019. CTC estimated classification accuracies are found to be strongly correlated (r > 0.927) with dense ground observations, along with very low bias (< 0.038) and RMSE (< 0.086). However, the bias and RMSE of CTC-estimated freeze accuracies are significantly inflated when sparse surface temperatures are used instead as the benchmark. Small errors are found with low absolute values (<0.317) of CTC-estimated class imbalance and a sample size of at least 365. CTC can generally provide the correct performance ranking for each product within a triplet - with low risk of incorrectly ranking all three products. In addition, a sample size of 10–160 is adequate for CTC to provide the correct ranking for the highest- or lowest-ranked product. This improves our knowledge and understanding of the reliability of the CTC method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶问夏完成签到 ,获得积分10
刚刚
2秒前
宜菏发布了新的文献求助10
2秒前
2秒前
道鹏完成签到,获得积分10
2秒前
4秒前
ESC惠子子子子子完成签到 ,获得积分10
4秒前
疯狂的迪子完成签到 ,获得积分10
5秒前
lailai发布了新的文献求助10
7秒前
笑容完成签到,获得积分10
7秒前
7秒前
道鹏发布了新的文献求助10
9秒前
9秒前
fqk完成签到,获得积分10
9秒前
土木研学僧完成签到,获得积分10
10秒前
鲜于冰彤完成签到,获得积分10
10秒前
Hont发布了新的文献求助10
12秒前
无心的可仁完成签到,获得积分10
15秒前
16秒前
小杰给小杰的求助进行了留言
17秒前
lailai完成签到,获得积分10
17秒前
小宝完成签到,获得积分10
20秒前
孤独的AD钙完成签到,获得积分10
21秒前
21秒前
BowieHuang应助mst采纳,获得10
21秒前
An.完成签到,获得积分10
22秒前
Super莹4589完成签到,获得积分20
22秒前
22秒前
熊雅完成签到,获得积分10
24秒前
wwj1009完成签到 ,获得积分10
25秒前
Mint完成签到 ,获得积分10
25秒前
25秒前
25秒前
yuyuyu完成签到,获得积分10
27秒前
lyb发布了新的文献求助10
27秒前
我爱学习完成签到,获得积分10
28秒前
qq完成签到 ,获得积分10
28秒前
29秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565253
求助须知:如何正确求助?哪些是违规求助? 4650097
关于积分的说明 14689825
捐赠科研通 4591984
什么是DOI,文献DOI怎么找? 2519415
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159