Visible light-driven chlorite activation process for enhanced sulfamethoxazole antibiotics degradation, antimicrobial resistance reduction and biotoxicity elimination

二氧化氯 光催化 化学 绿泥石 二氧化钛 降级(电信) 高级氧化法 光化学 可见光谱 化学工程 无机化学 催化作用 材料科学 有机化学 计算机科学 复合材料 工程类 电信 光电子学 石英
作者
Xiaoyang Song,Ruidian Su,Yanhua Wang,Yan Zhang,Baoyu Gao,Yan Wang,Defang Ma,Qian Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:452: 139103-139103 被引量:26
标识
DOI:10.1016/j.cej.2022.139103
摘要

In this study, a visible light-driven chlorite activation process, i.e., the combined ClO2-photocatalysis process, was constructed to efficiently produce chlorine dioxide for the enhanced degradation of the sulfamethoxazole antibiotic from aqueous solutions. The superiority of the combined ClO2-photocatalysis process compared to visible light photocatalytic system, and chlorine dioxide oxidation process was systematically investigated. The addition of chlorite in the BiOI-based visible light photocatalytic system achieved 100% removal of sulfamethoxazole within 30 min, surpassing both the photocatalytic system (16%) and chlorine dioxide oxidation process (70%). The degradation constant rate (k) was 0.0771 min−1, which was 2.7 times and 51.4 times higher than the chlorine dioxide oxidation process and photocatalytic system, respectively. Water matrix conditions including pH, inorganic ions, and organic matter had little effect on the degradation efficiency of sulfamethoxazole in the combined ClO2-photocatalysis process. Moreover, antibiotic-resistant bacteria can be effectively inactivated and the production of toxic chlorine-containing intermediates and disinfection byproducts is significantly inhibited. This combined ClO2-photocatalysis process takes advantage of photogenerated radicals to activate chlorite to chlorine dioxide, which not only promotes electron-hole separation, but also exhibits high efficiency, durability, resistance to external environment disturbances, and environmental safety, making it a good candidate for the efficient, green, and sustainable treatment of pharmaceutical wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao应助sunyexuan采纳,获得10
刚刚
1秒前
2秒前
淼淼之锋完成签到 ,获得积分10
2秒前
赢赢完成签到 ,获得积分10
2秒前
3秒前
4秒前
科目三应助落落采纳,获得10
6秒前
67发布了新的文献求助10
6秒前
6秒前
溜溜完成签到,获得积分10
6秒前
xixi完成签到 ,获得积分10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
撒上咖啡应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
琪琪扬扬发布了新的文献求助10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
orixero应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
清爽老九应助科研通管家采纳,获得20
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
hui发布了新的文献求助30
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
9秒前
迟大猫应助若狂采纳,获得10
9秒前
11111发布了新的文献求助30
9秒前
溜溜发布了新的文献求助10
10秒前
11秒前
wanli445完成签到,获得积分10
12秒前
科研通AI2S应助satchzhao采纳,获得10
12秒前
是小程啊完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808