电阻率和电导率
拉曼光谱
材料科学
沉积(地质)
光致发光
原子层沉积
化学气相沉积
分析化学(期刊)
带隙
正电子湮没谱学
薄膜
半导体
光电子学
纳米技术
化学
正电子湮没
正电子
环境化学
光学
电子
地质学
物理
古生物学
量子力学
沉积物
作者
Abderrahime Sekkat,Maciej Oskar Liedke,Việt Hương Nguyễn,Maik Butterling,Federico Baiutti,Juan de Dios Sirvent,Matthieu Weber,Laëtitia Rapenne,Daniel Bellet,Guy Chichignoud,Anne Kaminski‐Cachopo,Eric Hirschmann,A. Wagner,David Muñoz‐Rojas
标识
DOI:10.1038/s41467-022-32943-4
摘要
Cuprous oxide (Cu2O) is a promising p-type semiconductor material for many applications. So far, the lowest resistivity values are obtained for films deposited by physical methods and/or at high temperatures (~1000 °C), limiting their mass integration. Here, Cu2O thin films with ultra-low resistivity values of 0.4 Ω.cm were deposited at only 260 °C by atmospheric pressure spatial atomic layer deposition, a scalable chemical approach. The carrier concentration (7.1014-2.1018 cm-3), mobility (1-86 cm2/V.s), and optical bandgap (2.2-2.48 eV) are easily tuned by adjusting the fraction of oxygen used during deposition. The properties of the films are correlated to the defect landscape, as revealed by a combination of techniques (positron annihilation spectroscopy (PAS), Raman spectroscopy and photoluminescence). Our results reveal the existence of large complex defects and the decrease of the overall defect concentration in the films with increasing oxygen fraction used during deposition.
科研通智能强力驱动
Strongly Powered by AbleSci AI