PS+: A Simple yet Effective Framework for Fast Training on Parameter Server

计算机科学 简单(哲学) 计算 人工智能 超参数 仿形(计算机编程) 理论计算机科学 算法 程序设计语言 认识论 哲学
作者
A-Long Jin,Wenchao Xu,Song Guo,Bing Hu,Kwan L. Yeung
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 4625-4637
标识
DOI:10.1109/tpds.2022.3200518
摘要

In distributed training, workers collaboratively refine the global model parameters by pushing their updates to the Parameter Server and pulling fresher parameters for the next iteration. This introduces high communication costs for training at scale, and incurs unproductive waiting time for workers. To minimize the waiting time, existing approaches overlap communication and computation for deep neural networks. Yet, these techniques not only require the layer-by-layer model structures, but also need significant efforts in runtime profiling and hyperparameter tuning. To make the overlapping optimization simple and generic , in this article, we propose a new Parameter Server framework. Our solution decouples the dependency between push and pull operations, and allows workers to eagerly pull the global parameters. This way, both push and pull operations can be easily overlapped with computations. Besides, the overlapping manner offers a different way to address the straggler problem, where the stale updates greatly retard the training process. In the new framework, with adequate information available to workers, they can explicitly modulate the learning rates for their updates. Thus, the global parameters can be less compromised by stale updates. We implement a prototype system in PyTorch and demonstrate its effectiveness on both CPU/GPU clusters. Experimental results show that our prototype saves up to 54% less time for each iteration and up to 37% fewer iterations for model convergence, achieving up to 2.86× speedup over widely-used synchronization schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
F503完成签到,获得积分10
刚刚
han完成签到,获得积分10
刚刚
SciGPT应助hyx采纳,获得10
刚刚
和谐越彬发布了新的文献求助10
1秒前
1秒前
1秒前
缥缈的背包完成签到,获得积分10
1秒前
jiyixiao1完成签到,获得积分10
1秒前
2秒前
lili发布了新的文献求助10
2秒前
可靠的雨筠完成签到,获得积分10
2秒前
科研通AI6应助晓竹采纳,获得10
3秒前
FashionBoy应助Blowga采纳,获得10
3秒前
静加油发布了新的文献求助10
3秒前
大个应助zljgy2000采纳,获得30
3秒前
杨漫漫完成签到 ,获得积分10
3秒前
3秒前
敌敌畏完成签到,获得积分10
4秒前
落叶解三秋完成签到,获得积分10
4秒前
4秒前
打打应助京城不降雪c采纳,获得10
4秒前
4秒前
希望天下0贩的0应助su采纳,获得10
4秒前
CodeCraft应助AY采纳,获得10
5秒前
5秒前
23完成签到,获得积分20
5秒前
葛葛发布了新的文献求助20
5秒前
充电宝应助Wff采纳,获得10
6秒前
6秒前
飘逸楷瑞发布了新的文献求助10
6秒前
6秒前
哭泣海豚完成签到,获得积分10
6秒前
Akim应助奕_yinb采纳,获得10
6秒前
7秒前
infe完成签到,获得积分10
7秒前
红3完成签到,获得积分10
7秒前
7秒前
guowoo完成签到,获得积分10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827