PS+: A Simple yet Effective Framework for Fast Training on Parameter Server

计算机科学 简单(哲学) 计算 人工智能 超参数 仿形(计算机编程) 理论计算机科学 算法 程序设计语言 认识论 哲学
作者
A-Long Jin,Wenchao Xu,Song Guo,Bing Hu,Kwan L. Yeung
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 4625-4637
标识
DOI:10.1109/tpds.2022.3200518
摘要

In distributed training, workers collaboratively refine the global model parameters by pushing their updates to the Parameter Server and pulling fresher parameters for the next iteration. This introduces high communication costs for training at scale, and incurs unproductive waiting time for workers. To minimize the waiting time, existing approaches overlap communication and computation for deep neural networks. Yet, these techniques not only require the layer-by-layer model structures, but also need significant efforts in runtime profiling and hyperparameter tuning. To make the overlapping optimization simple and generic , in this article, we propose a new Parameter Server framework. Our solution decouples the dependency between push and pull operations, and allows workers to eagerly pull the global parameters. This way, both push and pull operations can be easily overlapped with computations. Besides, the overlapping manner offers a different way to address the straggler problem, where the stale updates greatly retard the training process. In the new framework, with adequate information available to workers, they can explicitly modulate the learning rates for their updates. Thus, the global parameters can be less compromised by stale updates. We implement a prototype system in PyTorch and demonstrate its effectiveness on both CPU/GPU clusters. Experimental results show that our prototype saves up to 54% less time for each iteration and up to 37% fewer iterations for model convergence, achieving up to 2.86× speedup over widely-used synchronization schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI6应助自由寻冬采纳,获得10
3秒前
TARS发布了新的文献求助10
4秒前
5秒前
5秒前
苹果亦巧发布了新的文献求助30
5秒前
hai关闭了hai文献求助
6秒前
黎建东完成签到,获得积分10
6秒前
6秒前
无辜的蜗牛完成签到 ,获得积分10
6秒前
Aimeee完成签到,获得积分10
7秒前
TAT完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
SciGPT应助王碱采纳,获得10
9秒前
9秒前
吴彦祖完成签到,获得积分10
9秒前
10秒前
mayun95完成签到,获得积分10
11秒前
star完成签到,获得积分20
11秒前
13秒前
13秒前
寒冷猫咪完成签到,获得积分20
13秒前
TARS发布了新的文献求助10
14秒前
15秒前
科研通AI6应助Maxw采纳,获得10
15秒前
15秒前
15秒前
Genius完成签到,获得积分10
15秒前
jj发布了新的文献求助10
17秒前
啦11发布了新的文献求助20
17秒前
18秒前
mayun95发布了新的文献求助10
18秒前
18秒前
19秒前
opair应助多愁善感的鱼采纳,获得10
19秒前
王碱发布了新的文献求助10
19秒前
王一完成签到,获得积分20
20秒前
20秒前
寒冷猫咪发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497