PS+: A Simple yet Effective Framework for Fast Training on Parameter Server

计算机科学 简单(哲学) 计算 人工智能 超参数 仿形(计算机编程) 理论计算机科学 算法 程序设计语言 认识论 哲学
作者
A-Long Jin,Wenchao Xu,Song Guo,Bing Hu,Kwan L. Yeung
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 4625-4637
标识
DOI:10.1109/tpds.2022.3200518
摘要

In distributed training, workers collaboratively refine the global model parameters by pushing their updates to the Parameter Server and pulling fresher parameters for the next iteration. This introduces high communication costs for training at scale, and incurs unproductive waiting time for workers. To minimize the waiting time, existing approaches overlap communication and computation for deep neural networks. Yet, these techniques not only require the layer-by-layer model structures, but also need significant efforts in runtime profiling and hyperparameter tuning. To make the overlapping optimization simple and generic , in this article, we propose a new Parameter Server framework. Our solution decouples the dependency between push and pull operations, and allows workers to eagerly pull the global parameters. This way, both push and pull operations can be easily overlapped with computations. Besides, the overlapping manner offers a different way to address the straggler problem, where the stale updates greatly retard the training process. In the new framework, with adequate information available to workers, they can explicitly modulate the learning rates for their updates. Thus, the global parameters can be less compromised by stale updates. We implement a prototype system in PyTorch and demonstrate its effectiveness on both CPU/GPU clusters. Experimental results show that our prototype saves up to 54% less time for each iteration and up to 37% fewer iterations for model convergence, achieving up to 2.86× speedup over widely-used synchronization schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harbour-Y完成签到 ,获得积分10
刚刚
11mao11完成签到 ,获得积分10
2秒前
华仔应助dreamfox采纳,获得10
3秒前
dzc发布了新的文献求助20
3秒前
5秒前
healer完成签到,获得积分10
10秒前
12秒前
忘词完成签到,获得积分10
13秒前
chen完成签到 ,获得积分10
13秒前
萝卜卷心菜完成签到 ,获得积分10
15秒前
17秒前
目m发布了新的文献求助10
17秒前
18秒前
王也发布了新的文献求助10
23秒前
Bailey完成签到,获得积分10
23秒前
24秒前
脑洞疼应助MoNeng采纳,获得10
26秒前
26秒前
蓝天应助加贝采纳,获得10
27秒前
28秒前
刘泽民完成签到,获得积分10
30秒前
CodeCraft应助佳期采纳,获得10
31秒前
浮游应助草中有粑粑采纳,获得10
31秒前
小二郎应助YEZQ采纳,获得10
32秒前
32秒前
33秒前
33秒前
椰子完成签到,获得积分10
35秒前
dzc完成签到,获得积分20
36秒前
Lyubb完成签到 ,获得积分10
37秒前
MoNeng发布了新的文献求助10
38秒前
39秒前
月半完成签到,获得积分10
39秒前
40秒前
VDC应助karstbing采纳,获得30
40秒前
浮游应助草中有粑粑采纳,获得10
40秒前
Orange应助冰激凌采纳,获得10
41秒前
小康完成签到,获得积分10
41秒前
42秒前
沉静弘文完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478