超量积累植物
植物修复
环境科学
中国
播种
栖息地
生态学
生物
地理
农学
土壤水分
土壤科学
考古
作者
Xiaofeng Zhao,Mei Lei,Changhe Wei,Xiaoxia Guo
标识
DOI:10.1016/j.scitotenv.2022.158202
摘要
Phytoremediation is an effective way to remove metals from contaminated soil, and selecting remediation plants suitable for climate conditions is a prerequisite for effective phytoremediation. In this study, a MaxEnt model was applied to investigate the potential distribution and habitat suitability of three Cd-accumulating plants in China- Sedum alfredii, Phytolacca americana, and Hylotelephium spectabile and explore the key environmental factors that affect their habitat suitability. A total of 44 environmental parameters, including bioclimatic variables, altitude, and soil property parameters were used. The results showed that: (1) For S. alfredii, suitable areas account for 14.9 % of the area of China, which are mainly distributed in the middle and lower reaches of the Yangtze River. (2) The suitable areas of P. americana account for 22.7 % of China and are mainly located in the regions of the Qinling Mountains and the south of China. (3) While that for H. spectabile are mainly located in the regions of northeastern China and certain regions of central China, with suitable areas account for 8.3 % of the area of China. (4) The distribution of these three plants is significantly affected by precipitation; specifically, solar radiation is an influential factor for the distribution of S. alfredii and H. spectabile, and temperature limits the distribution of P. americana. The selection and agronomic management of hyperaccumulators for phytoremediation requires multifactor consideration (e.g., climate, soil conditions and planting patterns). The results can provide guidance for identifying suitable areas for planting these three accumulating plants, which could not only prevent the unscientific cultivation of them in unsuitable habitats but also enhance the efficiency of phytoremediation. Meanwhile, these findings are expected to contribute to agronomic management for improved phytoremediation effects in different Cd-contaminated regions of China.
科研通智能强力驱动
Strongly Powered by AbleSci AI