已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems

互惠主义(生物学) 计算机科学 群体智能 蚁群优化算法 人工智能 蚁群 人口 数学优化 机器学习 水准点(测量) 元启发式 数学 生物 生态学 粒子群优化 地理 大地测量学 人口学 社会学
作者
Navid Eslami,S Yazdani,Mohammad Mirzaei,Esmaeil Hadavandi
出处
期刊:Mathematics and Computers in Simulation [Elsevier]
卷期号:201: 362-395 被引量:32
标识
DOI:10.1016/j.matcom.2022.05.015
摘要

Swarm intelligence algorithms, which are developed for solving complex optimization problems designed by focusing on simulating the social behavior of one species of simple animals. However, simple animals utilize cooperation to work together that result in more complex and smarter behaviors. This paper proposes a novel population-based optimization paradigm for solving NP-hard problems called “Aphid–Ant Mutualism (AAM)” which is inspired by a unique relationship between aphids and ants’ species. This relationship is called ‘mutualism’. Despite the previous studies that the social behaviors of aphids and ants were simulated, AAM models mutual interaction among aphids and ants in nature. Thus, AAM has new features by incorporating heterogeneous individuals consisting of aphids and ants that live in various colonies together and have different decentralized learning behaviors and objectives. Inspired by nature, colony-based information exchange and using different search strategies including focusing on the individual’s personal knowledge, learning from other colony’s members and information sharing with adjacent colonies are used. This mutualism leads to converging to the global optimum and avoids premature convergence. Performance of AAM is assessed using statistical evaluation, convergence analysis, and a non-parametric Wilcoxon rank-sum test with a 5% significance degree on forty-one benchmarks selected from well-known functions of recent studies and more challenging benchmark functions called CEC 2014, CEC 2017 and also CEC-C06 2019 test suite. Statistical results and comparisons with other meta-heuristic algorithms demonstrate that the AAM algorithm provides promising and competitive outcomes. Furthermore, it can produce more accurate solutions with a faster convergence rate to the global optima.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤芳自赏IrisKing完成签到 ,获得积分10
4秒前
矮小的盼夏完成签到 ,获得积分10
4秒前
邓亚楠发布了新的文献求助10
5秒前
9秒前
科研通AI2S应助Kiara采纳,获得20
10秒前
华仔应助完美的一斩采纳,获得10
13秒前
14秒前
英姑应助邓亚楠采纳,获得10
15秒前
zyyla发布了新的文献求助20
15秒前
冲冲冲发布了新的文献求助20
15秒前
zzzyyy应助科研通管家采纳,获得10
16秒前
gjww应助科研通管家采纳,获得10
16秒前
爱静静应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
17秒前
23秒前
华仔应助叮咚雨采纳,获得10
23秒前
Ava应助叮咚雨采纳,获得10
23秒前
25秒前
wao完成签到 ,获得积分10
27秒前
28秒前
28秒前
33秒前
34秒前
dasaber发布了新的文献求助10
35秒前
axinge发布了新的文献求助10
39秒前
40秒前
三更笔舞完成签到,获得积分10
42秒前
陶1122完成签到,获得积分10
44秒前
45秒前
dogontree发布了新的文献求助10
46秒前
罗零完成签到 ,获得积分10
48秒前
汉堡包应助zyyla采纳,获得20
48秒前
狗头发布了新的文献求助30
51秒前
WindaQ发布了新的文献求助10
52秒前
三更笔舞发布了新的文献求助10
54秒前
wanci应助简单的熊猫采纳,获得10
55秒前
wanci应助dogontree采纳,获得10
56秒前
青衫完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助别疯采纳,获得10
1分钟前
乐乐应助狗头采纳,获得10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793515
关于积分的说明 7806758
捐赠科研通 2449763
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626871
版权声明 601314