Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems

互惠主义(生物学) 计算机科学 群体智能 蚁群优化算法 人工智能 蚁群 人口 数学优化 机器学习 水准点(测量) 元启发式 数学 生物 生态学 粒子群优化 地理 大地测量学 人口学 社会学
作者
Navid Eslami,S Yazdani,Mohammad Mirzaei,Esmaeil Hadavandi
出处
期刊:Mathematics and Computers in Simulation [Elsevier BV]
卷期号:201: 362-395 被引量:32
标识
DOI:10.1016/j.matcom.2022.05.015
摘要

Swarm intelligence algorithms, which are developed for solving complex optimization problems designed by focusing on simulating the social behavior of one species of simple animals. However, simple animals utilize cooperation to work together that result in more complex and smarter behaviors. This paper proposes a novel population-based optimization paradigm for solving NP-hard problems called “Aphid–Ant Mutualism (AAM)” which is inspired by a unique relationship between aphids and ants’ species. This relationship is called ‘mutualism’. Despite the previous studies that the social behaviors of aphids and ants were simulated, AAM models mutual interaction among aphids and ants in nature. Thus, AAM has new features by incorporating heterogeneous individuals consisting of aphids and ants that live in various colonies together and have different decentralized learning behaviors and objectives. Inspired by nature, colony-based information exchange and using different search strategies including focusing on the individual’s personal knowledge, learning from other colony’s members and information sharing with adjacent colonies are used. This mutualism leads to converging to the global optimum and avoids premature convergence. Performance of AAM is assessed using statistical evaluation, convergence analysis, and a non-parametric Wilcoxon rank-sum test with a 5% significance degree on forty-one benchmarks selected from well-known functions of recent studies and more challenging benchmark functions called CEC 2014, CEC 2017 and also CEC-C06 2019 test suite. Statistical results and comparisons with other meta-heuristic algorithms demonstrate that the AAM algorithm provides promising and competitive outcomes. Furthermore, it can produce more accurate solutions with a faster convergence rate to the global optima.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真实的珠完成签到,获得积分10
1秒前
2秒前
Siriluck完成签到 ,获得积分10
2秒前
coldspringhao发布了新的文献求助10
3秒前
彩色的向珊完成签到,获得积分10
3秒前
赘婿应助qq采纳,获得10
5秒前
自然又蓝关注了科研通微信公众号
5秒前
Mr鹿完成签到,获得积分10
7秒前
Jiatu_Li完成签到,获得积分10
7秒前
稳重凌旋发布了新的文献求助10
9秒前
11秒前
恋雅颖月应助可爱丸子采纳,获得10
12秒前
kmy完成签到 ,获得积分10
12秒前
TKTK完成签到,获得积分10
13秒前
tiantian8715完成签到,获得积分10
14秒前
V_I_G发布了新的文献求助10
14秒前
十三完成签到 ,获得积分10
17秒前
烟花应助曹雄采纳,获得10
17秒前
17秒前
TKTK发布了新的文献求助10
17秒前
lemon完成签到 ,获得积分10
18秒前
Orange应助DDDDD采纳,获得10
20秒前
zho发布了新的文献求助10
22秒前
orixero应助卜凡采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
23秒前
搜集达人应助sara采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
小沈应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
24秒前
SHAO应助科研通管家采纳,获得10
24秒前
酷炫翠桃应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得30
24秒前
Whim应助科研通管家采纳,获得20
24秒前
orixero应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425