Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems

互惠主义(生物学) 计算机科学 群体智能 蚁群优化算法 人工智能 蚁群 人口 数学优化 机器学习 水准点(测量) 元启发式 数学 生物 生态学 粒子群优化 地理 大地测量学 人口学 社会学
作者
Navid Eslami,S Yazdani,Mohammad Mirzaei,Esmaeil Hadavandi
出处
期刊:Mathematics and Computers in Simulation [Elsevier]
卷期号:201: 362-395 被引量:32
标识
DOI:10.1016/j.matcom.2022.05.015
摘要

Swarm intelligence algorithms, which are developed for solving complex optimization problems designed by focusing on simulating the social behavior of one species of simple animals. However, simple animals utilize cooperation to work together that result in more complex and smarter behaviors. This paper proposes a novel population-based optimization paradigm for solving NP-hard problems called “Aphid–Ant Mutualism (AAM)” which is inspired by a unique relationship between aphids and ants’ species. This relationship is called ‘mutualism’. Despite the previous studies that the social behaviors of aphids and ants were simulated, AAM models mutual interaction among aphids and ants in nature. Thus, AAM has new features by incorporating heterogeneous individuals consisting of aphids and ants that live in various colonies together and have different decentralized learning behaviors and objectives. Inspired by nature, colony-based information exchange and using different search strategies including focusing on the individual’s personal knowledge, learning from other colony’s members and information sharing with adjacent colonies are used. This mutualism leads to converging to the global optimum and avoids premature convergence. Performance of AAM is assessed using statistical evaluation, convergence analysis, and a non-parametric Wilcoxon rank-sum test with a 5% significance degree on forty-one benchmarks selected from well-known functions of recent studies and more challenging benchmark functions called CEC 2014, CEC 2017 and also CEC-C06 2019 test suite. Statistical results and comparisons with other meta-heuristic algorithms demonstrate that the AAM algorithm provides promising and competitive outcomes. Furthermore, it can produce more accurate solutions with a faster convergence rate to the global optima.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助震动的镜子采纳,获得10
1秒前
2秒前
2秒前
sooyaaa发布了新的文献求助10
4秒前
4秒前
yangyangyang完成签到,获得积分10
4秒前
6秒前
Akim应助WangRuize采纳,获得10
6秒前
暴躁咩完成签到 ,获得积分10
7秒前
xjjw发布了新的文献求助10
7秒前
老张发布了新的文献求助10
7秒前
7秒前
醉熏的青筠完成签到,获得积分10
8秒前
隐形曼青应助俺爱SCI采纳,获得10
8秒前
zhanzhanzhan完成签到,获得积分10
9秒前
9秒前
恍恍惚惚发布了新的文献求助30
10秒前
10秒前
小马甲应助帕克采纳,获得10
10秒前
慕青应助hhh采纳,获得10
11秒前
爱撒娇的妙竹完成签到,获得积分10
12秒前
12秒前
fanfan发布了新的文献求助10
12秒前
薰衣草完成签到,获得积分10
13秒前
13秒前
时光完成签到,获得积分10
14秒前
慕青应助xjjw采纳,获得10
14秒前
小马想毕业完成签到,获得积分10
14秒前
14秒前
朱一龙完成签到,获得积分10
15秒前
777qing完成签到,获得积分10
15秒前
16秒前
友人Y完成签到,获得积分10
17秒前
辛艺发布了新的文献求助10
17秒前
17秒前
小猪皮发布了新的文献求助10
18秒前
Raven应助lqy采纳,获得10
18秒前
18秒前
27758完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310786
求助须知:如何正确求助?哪些是违规求助? 4455001
关于积分的说明 13861687
捐赠科研通 4343099
什么是DOI,文献DOI怎么找? 2384947
邀请新用户注册赠送积分活动 1379413
关于科研通互助平台的介绍 1347721