Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems

互惠主义(生物学) 计算机科学 群体智能 蚁群优化算法 人工智能 蚁群 人口 数学优化 机器学习 水准点(测量) 元启发式 数学 生物 生态学 粒子群优化 社会学 人口学 地理 大地测量学
作者
Navid Eslami,S Yazdani,Mohammad Mirzaei,Esmaeil Hadavandi
出处
期刊:Mathematics and Computers in Simulation [Elsevier]
卷期号:201: 362-395 被引量:32
标识
DOI:10.1016/j.matcom.2022.05.015
摘要

Swarm intelligence algorithms, which are developed for solving complex optimization problems designed by focusing on simulating the social behavior of one species of simple animals. However, simple animals utilize cooperation to work together that result in more complex and smarter behaviors. This paper proposes a novel population-based optimization paradigm for solving NP-hard problems called “Aphid–Ant Mutualism (AAM)” which is inspired by a unique relationship between aphids and ants’ species. This relationship is called ‘mutualism’. Despite the previous studies that the social behaviors of aphids and ants were simulated, AAM models mutual interaction among aphids and ants in nature. Thus, AAM has new features by incorporating heterogeneous individuals consisting of aphids and ants that live in various colonies together and have different decentralized learning behaviors and objectives. Inspired by nature, colony-based information exchange and using different search strategies including focusing on the individual’s personal knowledge, learning from other colony’s members and information sharing with adjacent colonies are used. This mutualism leads to converging to the global optimum and avoids premature convergence. Performance of AAM is assessed using statistical evaluation, convergence analysis, and a non-parametric Wilcoxon rank-sum test with a 5% significance degree on forty-one benchmarks selected from well-known functions of recent studies and more challenging benchmark functions called CEC 2014, CEC 2017 and also CEC-C06 2019 test suite. Statistical results and comparisons with other meta-heuristic algorithms demonstrate that the AAM algorithm provides promising and competitive outcomes. Furthermore, it can produce more accurate solutions with a faster convergence rate to the global optima.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
雾1206发布了新的文献求助10
1秒前
英俊的铭应助小木林采纳,获得10
2秒前
无极微光发布了新的文献求助20
2秒前
华仔应助123456采纳,获得10
2秒前
6秒前
7秒前
Ccccsa完成签到,获得积分20
8秒前
乐乐应助石榴汁的书采纳,获得10
8秒前
9秒前
9秒前
怕孤单的绝义完成签到,获得积分10
9秒前
顺利寻真发布了新的文献求助20
10秒前
11秒前
英俊的铭应助无极微光采纳,获得10
11秒前
失眠洋葱发布了新的文献求助10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
pluto应助ZX采纳,获得10
13秒前
14秒前
小木林发布了新的文献求助10
14秒前
sunny发布了新的文献求助10
15秒前
16秒前
hzt完成签到,获得积分20
17秒前
JM关闭了JM文献求助
17秒前
辛勤的绮琴完成签到,获得积分10
19秒前
无极微光发布了新的文献求助10
21秒前
木泽完成签到,获得积分10
21秒前
科研通AI6应助hzt采纳,获得10
22秒前
小木林完成签到,获得积分10
22秒前
22秒前
天苍野茫发布了新的文献求助10
23秒前
23秒前
asd应助kexian_ning采纳,获得30
24秒前
25秒前
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031