Interface regulation of Cu2Se via Cu-Se-C bonding for superior lithium-ion batteries

硒化物 阳极 电化学 异质结 锂(药物) 材料科学 扩散 电容 电极 离子 电池(电) 阴极 过渡金属 纳米技术 化学工程 化学 光电子学 物理化学 热力学 催化作用 冶金 医学 功率(物理) 物理 生物化学 有机化学 工程类 内分泌学
作者
Kefu Zhu,Shiqiang Wei,Quan Zhou,Shuangming Chen,Yunxiang Lin,Pengjun Zhang,Yuyang Cao,Changda Wang,Yixiu Wang,Yujian Xia,Dengfeng Cao,Zeinab Mohamed,Xin Guo,Xiya Yang,Xiaojun Wu,Song Li
出处
期刊:Nano Research [Springer Nature]
卷期号:16 (2): 2421-2427 被引量:25
标识
DOI:10.1007/s12274-022-4953-7
摘要

Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity. However, the huge volume fluctuation generated by conversion reaction during the charge/discharge process results in the significant electrochemical performance reduction. Herein, the carbon-regulated copper(I) selenide (Cu2Se@C) is designed to significantly promote the interface stability and ion diffusion for selenide electrodes. The systematic X-ray spectroscopies characterizations and density functional theory (DFT) simulations reveal that the Cu-Se-C bonding forming on the surface of Cu2Se not only improves the electronic conductivity of Cu2Se@C but also retards the volume change during electrochemical cycling, playing a pivotal role in interface regulation. Consequently, the storage kinetics of Cu2Se@C is mainly controlled by the capacitance process diverting from the ion diffusion-controlled process of Cu2Se. When employed this distinctive Cu2Se@C as anode active material in Li coin cell configuration, the ultrahigh specific capacity of 810.3 mA·h·g−1 at 0.1 A·g−1 and the capacity retention of 83% after 1,500 cycles at 5 A·g−1 is achieved, implying the best Cu-based Li+-storage capacity reported so far. This strategy of heterojunction combined with chemical bonding regulation opens up a potential way for the development of advanced electrodes for battery storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
汉堡包应助茫然树茫然果采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
大个应助迷人灰狼采纳,获得10
3秒前
TTT发布了新的文献求助10
3秒前
清秀的大山完成签到,获得积分10
3秒前
清枫完成签到,获得积分10
4秒前
4秒前
FashionBoy应助智商洼地采纳,获得10
4秒前
田様应助谷策采纳,获得10
5秒前
张zz发布了新的文献求助10
6秒前
jzt12138发布了新的文献求助10
7秒前
流氓煎蛋发布了新的文献求助10
7秒前
清枫发布了新的文献求助10
7秒前
newbiology完成签到 ,获得积分10
7秒前
8秒前
研友_V8RQEZ完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
橘子发布了新的文献求助10
12秒前
已知中的未知完成签到 ,获得积分10
12秒前
12秒前
温柔的吐司完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
16秒前
16秒前
慕青应助JL采纳,获得50
17秒前
xixixi发布了新的文献求助10
17秒前
奋斗碧灵完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636