Adaptive Learning Rate Residual Network Based on Physics-Informed for Solving Partial Differential Equations

残余物 偏微分方程 人工神经网络 泊松方程 边界(拓扑) 应用数学 计算机科学 适应性学习 边值问题 数学优化 数学 算法 人工智能 数学分析
作者
Miaomiao Chen,Ruiping Niu,Ming Li,Junhong Yue
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:20 (02) 被引量:3
标识
DOI:10.1142/s0219876222500499
摘要

Recently, Physics-informed neural networks (PINNs) have been widely applied to solving various types of partial differential equations (PDEs) such as Poisson equation, Klein–Gordon equation, and diffusion equation. However, it is difficult to obtain higher accurate solutions, especially at the boundary due to the gradient imbalance of different loss terms for the PINN model. In this work, an adaptive learning rate residual network algorithm based on physics-informed (adaptive-PIRN) is proposed to overcome this limitation of the PINN model. In the adaptive-PIRN model, an adaptive learning rate technique is introduced to adaptively configure appropriate weights to the residual loss of the governing equation and the loss of initial/boundary conditions (I/BCs) by utilizing gradient statistics, which can alleviate gradient imbalance of different loss terms in PINN. Besides, based on the idea of ResNet, the “short connection” technique is used in adaptive-PIRN model, which can ensure that the original information is identically mapped. This structure has stronger expressive capabilities than fully connected neural networks and can avoid gradient disappearance. Finally, three different types of PDE are conducted to demonstrate predictive accuracy of our model. In addition, it is clearly observed from the results that the adaptive-PIRN can balance the gradient of loss items to a great extent, which improves the effectiveness of this network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄家琪发布了新的文献求助10
刚刚
研友_Z6WWQ8完成签到,获得积分10
1秒前
领导范儿应助沸腾鱼采纳,获得10
1秒前
1秒前
海虎爆破拳完成签到,获得积分10
1秒前
wu完成签到,获得积分10
1秒前
Tracy完成签到,获得积分10
1秒前
MM发布了新的文献求助10
2秒前
summer发布了新的文献求助20
3秒前
粥粥完成签到,获得积分10
3秒前
lisier发布了新的文献求助10
4秒前
CCC完成签到,获得积分10
4秒前
Sunny完成签到,获得积分10
4秒前
德鲁大叔完成签到,获得积分10
4秒前
小蘑菇应助诺之采纳,获得10
5秒前
一只你个灰完成签到,获得积分10
5秒前
5秒前
火山羊完成签到,获得积分10
7秒前
木木完成签到,获得积分10
7秒前
脑洞疼应助thousandlong采纳,获得10
8秒前
WenzongLai完成签到,获得积分10
8秒前
8秒前
CipherSage应助fsky采纳,获得30
8秒前
酷波er应助紫紫采纳,获得10
8秒前
Owen应助Engen采纳,获得10
9秒前
归尘应助熊熊熊采纳,获得10
9秒前
9秒前
大大怪发布了新的文献求助10
10秒前
黄家琪关注了科研通微信公众号
11秒前
核电站完成签到,获得积分10
11秒前
11秒前
xv完成签到,获得积分10
11秒前
usee完成签到,获得积分10
11秒前
TZMY完成签到,获得积分10
11秒前
12秒前
丘比特应助MM采纳,获得10
12秒前
田様应助JoshuaChen采纳,获得10
13秒前
Ttttt完成签到,获得积分10
13秒前
瘦瘦依白应助爱吃脑袋瓜采纳,获得10
13秒前
哈哈是你发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582