Adaptive Learning Rate Residual Network Based on Physics-Informed for Solving Partial Differential Equations

残余物 偏微分方程 人工神经网络 泊松方程 边界(拓扑) 应用数学 计算机科学 适应性学习 边值问题 数学优化 数学 算法 人工智能 数学分析
作者
Miaomiao Chen,Ruiping Niu,Ming Li,Junhong Yue
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:20 (02) 被引量:3
标识
DOI:10.1142/s0219876222500499
摘要

Recently, Physics-informed neural networks (PINNs) have been widely applied to solving various types of partial differential equations (PDEs) such as Poisson equation, Klein–Gordon equation, and diffusion equation. However, it is difficult to obtain higher accurate solutions, especially at the boundary due to the gradient imbalance of different loss terms for the PINN model. In this work, an adaptive learning rate residual network algorithm based on physics-informed (adaptive-PIRN) is proposed to overcome this limitation of the PINN model. In the adaptive-PIRN model, an adaptive learning rate technique is introduced to adaptively configure appropriate weights to the residual loss of the governing equation and the loss of initial/boundary conditions (I/BCs) by utilizing gradient statistics, which can alleviate gradient imbalance of different loss terms in PINN. Besides, based on the idea of ResNet, the “short connection” technique is used in adaptive-PIRN model, which can ensure that the original information is identically mapped. This structure has stronger expressive capabilities than fully connected neural networks and can avoid gradient disappearance. Finally, three different types of PDE are conducted to demonstrate predictive accuracy of our model. In addition, it is clearly observed from the results that the adaptive-PIRN can balance the gradient of loss items to a great extent, which improves the effectiveness of this network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bowling完成签到,获得积分10
刚刚
刚刚
丘比特应助SunnyLife采纳,获得30
刚刚
124dc发布了新的文献求助10
刚刚
xyy发布了新的文献求助10
1秒前
1秒前
小巧吐司完成签到,获得积分10
1秒前
chen完成签到 ,获得积分10
1秒前
2秒前
小小娜完成签到,获得积分10
3秒前
shenyihui完成签到,获得积分10
3秒前
awwww发布了新的文献求助10
4秒前
夫子饮酒完成签到,获得积分10
4秒前
小妤丸子完成签到,获得积分10
4秒前
十九之夏发布了新的文献求助10
4秒前
汉堡包应助nanami采纳,获得10
4秒前
独特的蛋挞完成签到,获得积分10
4秒前
高有财完成签到 ,获得积分10
4秒前
4秒前
脑洞疼应助谨慎的向南采纳,获得10
5秒前
5秒前
万严完成签到,获得积分10
5秒前
小幼芷完成签到,获得积分10
6秒前
枕雪听冷冷完成签到,获得积分20
6秒前
张正完成签到,获得积分10
6秒前
cdx发布了新的文献求助10
6秒前
张尧摇摇摇发布了新的文献求助150
7秒前
子车茗应助21:40采纳,获得30
7秒前
小布应助小李呀采纳,获得20
8秒前
1255475177完成签到 ,获得积分10
8秒前
8秒前
饱满的紫伊完成签到,获得积分10
8秒前
9秒前
9秒前
风吹麦田应助鸭子采纳,获得30
9秒前
holycale完成签到,获得积分20
9秒前
脑洞疼应助追剧狂魔采纳,获得10
9秒前
10秒前
beiyue完成签到,获得积分10
10秒前
10秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205080
求助须知:如何正确求助?哪些是违规求助? 4383908
关于积分的说明 13651462
捐赠科研通 4241962
什么是DOI,文献DOI怎么找? 2327122
邀请新用户注册赠送积分活动 1324898
关于科研通互助平台的介绍 1277083