堆积
纳米材料
共价有机骨架
纳米结构
材料科学
范德瓦尔斯力
石墨烯
透射电子显微镜
共价键
纳米技术
图层(电子)
纳米电子学
非共价相互作用
多孔性
化学工程
结晶学
化学
分子
有机化学
复合材料
氢键
工程类
作者
Qi Zheng,Xinle Li,Qiubo Zhang,Daewon Lee,Haiyan Mao,Chongqing Yang,Karen C. Bustillo,Jeffrey A. Reimer,Yi Liu,Jinyang Jiang,Haimei Zheng
标识
DOI:10.1016/j.mattod.2022.09.002
摘要
Achieving hierarchical nanomaterials from a bottom-up approach remains challenging. Here, we report a closed-cage, onion nanostructure of covalent organic framework (COF) obtained through a low-temperature solvothermal synthesis. Atomic resolution transmission electron microscopy revealed the atomic arrangement in this COF onion, in which rich nitrogen was uniformly embedded in the periodic porous graphitic framework. The COF onion structure displayed graphitic features at a 0.33 nm interlayer spacing with Van der Waals interactions predominated between the layers. The onion layers exhibited significant heterogeneity in layer stacking by adopting a combination of different stacking modes. Defects were also found, such as five- or seven-member rings deviating from the perfect hexagonal lattice. These geometrical defects resulted in curving the 2D layers, which may have promoted the formation of onion nanostructures through a layer-by-layer attachment. We constructed a corresponding model that predicts COF onion properties. This novel onion exhibited a bandgap value of 2.56 eV, resembling other carbon-based nanomaterials, suggesting potential applications in sensors, photocatalysts, and nanoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI