Chemical similarity and machine learning-based approaches for the prediction of aquatic toxicity of binary and multicomponent pharmaceutical and pesticide mixtures against Aliivibrio fischeri

数量结构-活动关系 偏最小二乘回归 分子描述符 生化工程 相似性(几何) 二进制数 杀虫剂 生物系统 二元分类 化学 机器学习 计算机科学 人工智能 支持向量机 数学 生态学 工程类 生物 图像(数学) 算术
作者
Mainak Chatterjee,Kunal Roy
出处
期刊:Chemosphere [Elsevier]
卷期号:308: 136463-136463 被引量:16
标识
DOI:10.1016/j.chemosphere.2022.136463
摘要

Different classes of chemicals are present in the environment as mixtures. Among them, pharmaceuticals and pesticides are of major concern due to their improper use and disposal, and subsequent additive and non-additive effects. To assess the environmental risk posed by the mixtures of pharmaceuticals and pesticides, a quantitative structure-activity relationship (QSAR) model has been developed in this study using the pEC50 values of 198 binary and multi-component mixtures against the marine bacterium Aliivibrio fischeri. The developed partial least squares (PLS) model has been rigorously validated and proved to be a robust and extremely predictive one. To address the chances of overestimation of validation metrics, three cross-validation tests (mixtures out, compounds out, and everything out) have been applied, and the results were satisfactory. The use of simple 2-dimensional descriptors makes the prediction much quick, and also makes the model easily interpretable. A machine learning-based chemical read-across prediction has also been performed to justify the effectiveness of selected structural features in this study. In a nutshell, this study proves QSAR and chemical read-across as effective alternative approaches for the toxicity prediction of pharmaceutical and pesticide mixtures and also approves the use of mixture descriptors for modelling mixtures successfully.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6.1应助肖梦秋采纳,获得10
2秒前
2秒前
jasmine完成签到,获得积分10
3秒前
儒雅HR发布了新的文献求助10
4秒前
7秒前
Dailei发布了新的文献求助10
8秒前
xiaobai123456发布了新的文献求助10
9秒前
耿新冉发布了新的文献求助10
11秒前
王欢完成签到,获得积分10
11秒前
功夫熊猫完成签到 ,获得积分10
11秒前
贪玩的秋柔应助海不扬波采纳,获得10
12秒前
14秒前
15秒前
鹄之梦2006发布了新的文献求助10
17秒前
晚晚发布了新的文献求助10
20秒前
pengpeng发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
温婉的浩天完成签到,获得积分10
24秒前
pengpeng完成签到,获得积分20
25秒前
25秒前
27秒前
xiaobai123456发布了新的文献求助10
27秒前
向语堂发布了新的文献求助10
30秒前
周楚楚完成签到,获得积分10
31秒前
32秒前
1點點cui发布了新的文献求助10
33秒前
33秒前
科研通AI6.1应助shaoyu采纳,获得30
34秒前
机智的一笑完成签到,获得积分10
34秒前
Yiyi完成签到,获得积分10
34秒前
乐空思应助周楚楚采纳,获得20
35秒前
36秒前
鹄之梦2006完成签到,获得积分10
36秒前
向语堂完成签到,获得积分10
37秒前
37秒前
37秒前
SirDream完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856827
求助须知:如何正确求助?哪些是违规求助? 6324695
关于积分的说明 15635304
捐赠科研通 4971265
什么是DOI,文献DOI怎么找? 2681302
邀请新用户注册赠送积分活动 1625215
关于科研通互助平台的介绍 1582265