Discriminative and quantitative color-coding analysis of fluoroquinolones with dual-emitting lanthanide metal-organic frameworks

判别式 颜色编码 镧系元素 对偶(语法数字) 金属 金属有机骨架 材料科学 计算机科学 人工智能 化学 艺术 文学类 离子 吸附 有机化学
作者
Xingyi Wang,Qiuju Li,Boyang Zong,Xian Fang,Meng Liu,Zhuo Li,Shun Mao,Kostya Ostrikov
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:373: 132701-132701 被引量:28
标识
DOI:10.1016/j.snb.2022.132701
摘要

Color-coding analysis from chemicals of concern is in great demand, but faces low sensitivity and specificity, low resolution, and complex processing among the many challenges. Here, this work resolves these issues to enable the elusive quantitative detection of a variety of fluoroquinolone (FQ) antibiotics. A fluorescent sensor based on the dual-emitting lanthanide metal-organic frameworks combining Tb 3+ and Eu 3+ as the luminescent center and 1,3,5-benzenetricarboxylic acid as the ligand is constructed. Due to the different sensitization effects to lanthanide metals and different inherent fluorescence emissions of FQs, the sensor exhibits characteristic color variations towards nine FQ and enables the discriminative detection of multiple antibiotics with self-calibrated signals. For the first time, a polynomial surface fitting process is developed to correlate the coordinates of color-coding map and target concentration for quantitative analysis. Moreover, a smartphone-enabled sensing system is demonstrated for on-site imaging analysis of antibiotics. The demonstrated innovative antibiotic detection and color-coding-based signal processing approach will inform the development of cutting-edge analysis systems for public health and environmental monitoring. • Dual-emitting Ln-MOF fluorescent sensor designed for discriminative analysis of structurally similar antibiotics. • Highly sensitive and selective detection of fluoroquinolones antibiotics. • A polynomial surface fitting process is developed to correlate fluorescence color and antibiotic concentration. • Fluorescence color-coding analysis implemented portable device for multi-target detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
HuiJN完成签到 ,获得积分10
3秒前
锤子完成签到,获得积分10
4秒前
在水一方应助lizibelle采纳,获得10
5秒前
hoyden完成签到,获得积分10
5秒前
Stardust发布了新的文献求助10
6秒前
8秒前
momo发布了新的文献求助10
9秒前
9秒前
乐乐应助Mo采纳,获得10
10秒前
10秒前
Liufgui应助Z6kjoA采纳,获得20
10秒前
爆米花应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
cangy发布了新的文献求助10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
地表飞猪应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
13秒前
Akim应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
地表飞猪应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
地表飞猪应助科研通管家采纳,获得10
13秒前
13秒前
YamDaamCaa应助科研通管家采纳,获得30
13秒前
luo关闭了luo文献求助
14秒前
Jogging完成签到,获得积分10
15秒前
Villanellel发布了新的文献求助30
15秒前
李健应助ttt采纳,获得10
15秒前
科目三应助xueyu采纳,获得10
16秒前
Jello完成签到,获得积分10
19秒前
19秒前
111完成签到,获得积分10
20秒前
qq完成签到 ,获得积分10
20秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173