Lyapunov-Guided Delay-Aware Energy Efficient Offloading in IIoT-MEC Systems

计算机科学 Lyapunov优化 能源消耗 服务器 计算卸载 移动边缘计算 排队 延迟(音频) 计算机网络 分布式计算 实时计算 边缘计算 嵌入式系统 物联网 工程类 电气工程 人工智能 李雅普诺夫指数 混乱的 电信 Lyapunov重新设计
作者
Huaming Wu,Junqi Chen,Tu N. Nguyen,Huijun Tang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 2117-2128 被引量:66
标识
DOI:10.1109/tii.2022.3206787
摘要

With the increasingly humanized and intelligent operation of Industrial Internet of Things (IIoT) systems in Industry 5.0, delay-sensitive and compute-intensive (DSCI) devices have proliferated, and their demand for low latency and low power consumption has become more and more eager. In order to extend the battery life and improve the quality of user experience, we can offload DSCI-type workloads to mobile edge computing (MEC) servers for processing. However, offloading massive amounts of tasks will incur higher energy consumption, which is a severe test for the limited battery capacity of devices. In addition, the delay caused by frequent communication between IIoT devices and MEC cannot be ignored. In this article, we first formulate the stochastic computation offloading problem to minimize long-term energy consumption. Then, we construct a virtual queue using perturbed Lyapunov optimization techniques to transform the problem of guaranteeing task deadlines into a stable control problem for the virtual queue. Based on this, a novel delay-aware energy-efficient (DAEE) online offloading algorithm is proposed, which can adaptively offload more tasks when the network quality is good. Meanwhile, it delays transmission in the case of poor connectivity but ensures that the deadline is not violated. Moreover, we theoretically demonstrated that DAEE can enable the system to achieve an energy-delay tradeoff, and analyzed the feasibility of constructing virtual queues to assist the actual queue offloading tasks. Finally, simulation results show that DAEE performs well in minimizing energy consumption and maintaining low latency, especially for DSCI-type tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lina完成签到,获得积分10
2秒前
oumu完成签到,获得积分10
3秒前
不灭完成签到,获得积分10
3秒前
程爽完成签到,获得积分10
5秒前
6秒前
6秒前
Hello应助Xdz采纳,获得10
6秒前
6秒前
苏南完成签到 ,获得积分10
7秒前
试错完成签到,获得积分10
9秒前
koko发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
10秒前
cctv18应助zzhbby采纳,获得10
11秒前
orixero应助zhanghaoxiang采纳,获得10
12秒前
香蕉觅云应助有的没的采纳,获得10
13秒前
酷酷平灵完成签到,获得积分10
14秒前
xiaolifeidao完成签到,获得积分10
14秒前
14秒前
14秒前
Ren.完成签到,获得积分10
15秒前
15秒前
clf应助负责冰凡采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
16秒前
airvince应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得30
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
16秒前
情怀应助科研通管家采纳,获得10
16秒前
Radiant发布了新的文献求助10
16秒前
18秒前
18秒前
豆子完成签到,获得积分10
18秒前
18秒前
zhangxinxin完成签到 ,获得积分10
19秒前
L1nJ1nG完成签到,获得积分10
20秒前
壮观柔完成签到,获得积分20
21秒前
zou发布了新的文献求助10
21秒前
23秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756472
求助须知:如何正确求助?哪些是违规求助? 3299848
关于积分的说明 10111676
捐赠科研通 3014416
什么是DOI,文献DOI怎么找? 1655523
邀请新用户注册赠送积分活动 789986
科研通“疑难数据库(出版商)”最低求助积分说明 753523