Real-Time Counting and Height Measurement of Nursery Seedlings Based on Ghostnet–YoloV4 Network and Binocular Vision Technology

计算机科学 卷积神经网络 人工智能 领域(数学) 深度学习 特征(语言学) 实时计算 计算机视觉 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Xuguang Yuan,Dan Li,Peng Sun,Gen Wang,Yalou Ma
出处
期刊:Forests [MDPI AG]
卷期号:13 (9): 1459-1459 被引量:8
标识
DOI:10.3390/f13091459
摘要

Traditional nursery seedling detection often uses manual sampling counting and height measurement with rulers. This is not only inefficient and inaccurate, but it requires many human resources for nurseries that need to monitor the growth of saplings, making it difficult to meet the fast and efficient management requirements of modern forestry. To solve this problem, this paper proposes a real-time seedling detection framework based on an improved YoloV4 network and binocular camera, which can provide real-time measurements of the height and number of saplings in a nursery quickly and efficiently. The methodology is as follows: (i) creating a training dataset using a binocular camera field photography and data augmentation; (ii) replacing the backbone network of YoloV4 with Ghostnet and replacing the normal convolutional blocks of PANet in YoloV4 with depth-separable convolutional blocks, which will allow the Ghostnet–YoloV4 improved network to maintain efficient feature extraction while massively reducing the number of operations for real-time counting; (iii) integrating binocular vision technology into neural network detection to perform the real-time height measurement of saplings; and (iv) making corresponding parameter and equipment adjustments based on the specific morphology of the various saplings, and adding comparative experiments to enhance generalisability. The results of the field testing of nursery saplings show that the method is effective in overcoming noise in a large field environment, meeting the load-carrying capacity of embedded mobile devices with low-configuration management systems in real time and achieving over 92% accuracy in both counts and measurements. The results of these studies can provide technical support for the precise cultivation of nursery saplings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zozox完成签到 ,获得积分10
2秒前
stark完成签到,获得积分10
3秒前
SABUBU完成签到,获得积分10
5秒前
zhuxd完成签到 ,获得积分10
6秒前
YHBBZ完成签到 ,获得积分10
9秒前
浮游应助多恩下采纳,获得10
11秒前
菠萝包完成签到 ,获得积分10
13秒前
wo93872ni完成签到 ,获得积分10
13秒前
轻松的越彬完成签到 ,获得积分10
15秒前
未完成完成签到,获得积分10
18秒前
传统的孤丝完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
plz94完成签到 ,获得积分10
35秒前
ABJ完成签到 ,获得积分10
36秒前
Sandy完成签到 ,获得积分10
36秒前
潇洒冰蓝完成签到,获得积分10
40秒前
spring完成签到 ,获得积分10
42秒前
Wsyyy完成签到 ,获得积分10
44秒前
煎饼果子完成签到 ,获得积分10
44秒前
WSY完成签到 ,获得积分10
46秒前
47秒前
小蘑菇应助失眠的小蘑菇采纳,获得10
49秒前
49秒前
量子星尘发布了新的文献求助10
54秒前
Ai_niyou完成签到,获得积分10
54秒前
zyb完成签到 ,获得积分10
55秒前
rsdggsrser完成签到 ,获得积分10
57秒前
MRJJJJ完成签到,获得积分10
59秒前
ShishanXue完成签到 ,获得积分10
59秒前
Ziang_Liu完成签到 ,获得积分10
1分钟前
9527完成签到,获得积分10
1分钟前
科研通AI2S应助殷楷霖采纳,获得10
1分钟前
cq_2完成签到,获得积分0
1分钟前
oscar完成签到,获得积分10
1分钟前
1分钟前
QQWRV完成签到,获得积分10
1分钟前
凌泉完成签到 ,获得积分10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
七叶花开完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645043
求助须知:如何正确求助?哪些是违规求助? 4767578
关于积分的说明 15026217
捐赠科研通 4803454
什么是DOI,文献DOI怎么找? 2568317
邀请新用户注册赠送积分活动 1525684
关于科研通互助平台的介绍 1485247