Real-Time Counting and Height Measurement of Nursery Seedlings Based on Ghostnet–YoloV4 Network and Binocular Vision Technology

计算机科学 卷积神经网络 人工智能 领域(数学) 深度学习 特征(语言学) 实时计算 计算机视觉 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Xuguang Yuan,Dan Li,Peng Sun,Gen Wang,Yalou Ma
出处
期刊:Forests [MDPI AG]
卷期号:13 (9): 1459-1459 被引量:8
标识
DOI:10.3390/f13091459
摘要

Traditional nursery seedling detection often uses manual sampling counting and height measurement with rulers. This is not only inefficient and inaccurate, but it requires many human resources for nurseries that need to monitor the growth of saplings, making it difficult to meet the fast and efficient management requirements of modern forestry. To solve this problem, this paper proposes a real-time seedling detection framework based on an improved YoloV4 network and binocular camera, which can provide real-time measurements of the height and number of saplings in a nursery quickly and efficiently. The methodology is as follows: (i) creating a training dataset using a binocular camera field photography and data augmentation; (ii) replacing the backbone network of YoloV4 with Ghostnet and replacing the normal convolutional blocks of PANet in YoloV4 with depth-separable convolutional blocks, which will allow the Ghostnet–YoloV4 improved network to maintain efficient feature extraction while massively reducing the number of operations for real-time counting; (iii) integrating binocular vision technology into neural network detection to perform the real-time height measurement of saplings; and (iv) making corresponding parameter and equipment adjustments based on the specific morphology of the various saplings, and adding comparative experiments to enhance generalisability. The results of the field testing of nursery saplings show that the method is effective in overcoming noise in a large field environment, meeting the load-carrying capacity of embedded mobile devices with low-configuration management systems in real time and achieving over 92% accuracy in both counts and measurements. The results of these studies can provide technical support for the precise cultivation of nursery saplings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
colin完成签到,获得积分10
2秒前
哎嘿应助优美飞薇采纳,获得10
3秒前
充电宝应助渊思采纳,获得10
4秒前
xth完成签到 ,获得积分10
5秒前
Ridley完成签到,获得积分10
6秒前
Strike完成签到,获得积分10
8秒前
科研通AI2S应助酷酷妙梦采纳,获得10
9秒前
17完成签到 ,获得积分10
9秒前
英姑应助呦呦采纳,获得10
10秒前
Strike发布了新的文献求助10
10秒前
研友_LBrm9L完成签到,获得积分10
11秒前
传奇3应助001采纳,获得10
12秒前
慕青应助何处西风无酒旗采纳,获得10
12秒前
13秒前
小马甲应助医者修心采纳,获得10
14秒前
14秒前
大牛完成签到,获得积分10
14秒前
莫岸发布了新的文献求助10
16秒前
17秒前
18秒前
zyyin完成签到,获得积分10
18秒前
wzy13647744027完成签到,获得积分10
19秒前
雪白问兰应助Frank采纳,获得100
19秒前
所所应助fifteen采纳,获得10
20秒前
20秒前
onecloudhere发布了新的文献求助30
21秒前
22秒前
大牛发布了新的文献求助10
22秒前
打打应助kk采纳,获得10
23秒前
酷酷妙梦发布了新的文献求助10
23秒前
林夕发布了新的文献求助10
24秒前
希望天下0贩的0应助辞轲采纳,获得10
25秒前
26秒前
Rainbow7发布了新的文献求助10
26秒前
柔柔完成签到,获得积分20
30秒前
31秒前
32秒前
32秒前
情怀应助Strike采纳,获得10
33秒前
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154374
求助须知:如何正确求助?哪些是违规求助? 2805268
关于积分的说明 7864039
捐赠科研通 2463452
什么是DOI,文献DOI怎么找? 1311340
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821