Real-Time Counting and Height Measurement of Nursery Seedlings Based on Ghostnet–YoloV4 Network and Binocular Vision Technology

计算机科学 卷积神经网络 人工智能 领域(数学) 深度学习 特征(语言学) 实时计算 计算机视觉 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Xuguang Yuan,Dan Li,Peng Sun,Gen Wang,Yalou Ma
出处
期刊:Forests [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 1459-1459 被引量:8
标识
DOI:10.3390/f13091459
摘要

Traditional nursery seedling detection often uses manual sampling counting and height measurement with rulers. This is not only inefficient and inaccurate, but it requires many human resources for nurseries that need to monitor the growth of saplings, making it difficult to meet the fast and efficient management requirements of modern forestry. To solve this problem, this paper proposes a real-time seedling detection framework based on an improved YoloV4 network and binocular camera, which can provide real-time measurements of the height and number of saplings in a nursery quickly and efficiently. The methodology is as follows: (i) creating a training dataset using a binocular camera field photography and data augmentation; (ii) replacing the backbone network of YoloV4 with Ghostnet and replacing the normal convolutional blocks of PANet in YoloV4 with depth-separable convolutional blocks, which will allow the Ghostnet–YoloV4 improved network to maintain efficient feature extraction while massively reducing the number of operations for real-time counting; (iii) integrating binocular vision technology into neural network detection to perform the real-time height measurement of saplings; and (iv) making corresponding parameter and equipment adjustments based on the specific morphology of the various saplings, and adding comparative experiments to enhance generalisability. The results of the field testing of nursery saplings show that the method is effective in overcoming noise in a large field environment, meeting the load-carrying capacity of embedded mobile devices with low-configuration management systems in real time and achieving over 92% accuracy in both counts and measurements. The results of these studies can provide technical support for the precise cultivation of nursery saplings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斐嘿嘿发布了新的文献求助10
刚刚
刚刚
2秒前
CipherSage应助呆梨医生采纳,获得10
2秒前
jahcenia发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
orixero应助123采纳,获得10
5秒前
伽拉发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助旅行者采纳,获得10
8秒前
xiaohaitao完成签到,获得积分10
8秒前
脑洞疼应助斐嘿嘿采纳,获得10
8秒前
皓民完成签到,获得积分20
9秒前
charles发布了新的文献求助10
9秒前
10秒前
雪饼发布了新的文献求助10
10秒前
IOoOI完成签到,获得积分10
11秒前
李健的粉丝团团长应助wave采纳,获得10
11秒前
支水云完成签到,获得积分10
12秒前
aby发布了新的文献求助10
13秒前
13秒前
优雅的帽子完成签到 ,获得积分20
14秒前
maox1aoxin应助默默夏烟采纳,获得30
14秒前
鉨汏闫完成签到,获得积分10
15秒前
XZZH完成签到,获得积分10
18秒前
收拾收拾应助依然采纳,获得10
18秒前
123发布了新的文献求助10
18秒前
陈宏伟完成签到,获得积分10
19秒前
轻松的惜芹应助伽拉采纳,获得10
19秒前
aby完成签到,获得积分20
21秒前
健康的怡发布了新的文献求助20
22秒前
24秒前
无私的砖头完成签到 ,获得积分10
27秒前
28秒前
29秒前
31秒前
文二目分完成签到 ,获得积分10
31秒前
李爱国应助面面采纳,获得10
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160