Real-Time Counting and Height Measurement of Nursery Seedlings Based on Ghostnet–YoloV4 Network and Binocular Vision Technology

计算机科学 卷积神经网络 人工智能 领域(数学) 深度学习 特征(语言学) 实时计算 计算机视觉 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Xuguang Yuan,Dan Li,Peng Sun,Gen Wang,Yalou Ma
出处
期刊:Forests [MDPI AG]
卷期号:13 (9): 1459-1459 被引量:8
标识
DOI:10.3390/f13091459
摘要

Traditional nursery seedling detection often uses manual sampling counting and height measurement with rulers. This is not only inefficient and inaccurate, but it requires many human resources for nurseries that need to monitor the growth of saplings, making it difficult to meet the fast and efficient management requirements of modern forestry. To solve this problem, this paper proposes a real-time seedling detection framework based on an improved YoloV4 network and binocular camera, which can provide real-time measurements of the height and number of saplings in a nursery quickly and efficiently. The methodology is as follows: (i) creating a training dataset using a binocular camera field photography and data augmentation; (ii) replacing the backbone network of YoloV4 with Ghostnet and replacing the normal convolutional blocks of PANet in YoloV4 with depth-separable convolutional blocks, which will allow the Ghostnet–YoloV4 improved network to maintain efficient feature extraction while massively reducing the number of operations for real-time counting; (iii) integrating binocular vision technology into neural network detection to perform the real-time height measurement of saplings; and (iv) making corresponding parameter and equipment adjustments based on the specific morphology of the various saplings, and adding comparative experiments to enhance generalisability. The results of the field testing of nursery saplings show that the method is effective in overcoming noise in a large field environment, meeting the load-carrying capacity of embedded mobile devices with low-configuration management systems in real time and achieving over 92% accuracy in both counts and measurements. The results of these studies can provide technical support for the precise cultivation of nursery saplings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Urologyzz发布了新的文献求助10
刚刚
刚刚
刚刚
FFFFFF完成签到,获得积分10
1秒前
Jane完成签到,获得积分10
3秒前
晨晨完成签到 ,获得积分10
3秒前
bioinforiver发布了新的文献求助10
4秒前
陈转霞发布了新的文献求助10
5秒前
郁浅应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
Momomo应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
一一应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Momomo应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
冷傲迎梦发布了新的文献求助10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
华仔应助羊羊羊采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
麻雀发布了新的文献求助10
7秒前
郁浅应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
9秒前
识时务这也完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385