Machine Learning Methods to Improve the Accuracy of Industrial Robots

机器人 补偿(心理学) 人工神经网络 人工智能 工业机器人 支持向量机 计算机科学 航空航天 机器学习 机器人学 控制工程 工程类 精神分析 心理学 航空航天工程
作者
Colm Higgins,Lauren McGarry,Joseph Butterfield,Adrian Murphy
出处
期刊:SAE technical paper series 被引量:4
标识
DOI:10.4271/2023-01-1000
摘要

<div class="section abstract"><div class="htmlview paragraph">There has been an ongoing need to increase the application of industrial robots to complete high-accuracy aerospace manufacturing and assembly tasks. However, the success of this is dependent on the ability of robotic systems to meet the tolerance requirements of the sector. Machine learning (ML) robot error compensation models have the potential to address this challenge. Artificial neural networks (ANNs) have been successful in increasing the accuracy of industrial robots. However, they have not always brought robotic accuracy within typical aerospace tolerances. Methods that have not yet been investigated to further optimize the use ANNs used in ML robot error compensation methods are presented in this paper. The focus of ML compensation methods has dominantly surrounded ANNs; there have been little to no investigations into other types of ML algorithms for their suitability as robot error compensation models. The success of ANNs to date proves the capability of ML algorithms for this task, and therefore other ML algorithms should be investigated to determine their capability to potentially improve industrial robot accuracy. This paper takes a novel approach by investigating the Support Vector Regression (SVR) ML algorithm to compensate for robot error. The ML models in this research were trained using measurement data captured using a laser tracker and collaborative robot. The ANN model reduced the mean error by 46.4%, 94.8%, and 95.8%, in the x, y, and z-axis, respectively. The SVR model reduced the mean error by 42.4%, 95.9%, and 98.4%, in the x, y, and z-axis, respectively, demonstrating its ability to be implemented as a robotic error compensation model. The success of both the ANN and SVR algorithms enforces the need for further research into other ML algorithms as robot error compensation models, and there is also still potential to further optimize the algorithms used.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xieyusen发布了新的文献求助10
1秒前
kiki发布了新的文献求助10
1秒前
3秒前
Mic应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助科研通管家采纳,获得20
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Mic应助科研通管家采纳,获得10
4秒前
可颂完成签到 ,获得积分10
4秒前
无花果应助科研通管家采纳,获得20
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
欣喜高丽应助科研通管家采纳,获得10
4秒前
Mic应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
笨鸟先飞完成签到 ,获得积分10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
ffff发布了新的文献求助10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
5秒前
欣喜高丽应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
Mic应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743471
求助须知:如何正确求助?哪些是违规求助? 5414214
关于积分的说明 15347603
捐赠科研通 4884202
什么是DOI,文献DOI怎么找? 2625645
邀请新用户注册赠送积分活动 1574504
关于科研通互助平台的介绍 1531414