亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Methods to Improve the Accuracy of Industrial Robots

机器人 补偿(心理学) 人工神经网络 人工智能 工业机器人 支持向量机 计算机科学 航空航天 机器学习 机器人学 控制工程 工程类 精神分析 心理学 航空航天工程
作者
Colm Higgins,Lauren McGarry,Joseph Butterfield,Adrian Murphy
出处
期刊:SAE technical paper series 被引量:4
标识
DOI:10.4271/2023-01-1000
摘要

<div class="section abstract"><div class="htmlview paragraph">There has been an ongoing need to increase the application of industrial robots to complete high-accuracy aerospace manufacturing and assembly tasks. However, the success of this is dependent on the ability of robotic systems to meet the tolerance requirements of the sector. Machine learning (ML) robot error compensation models have the potential to address this challenge. Artificial neural networks (ANNs) have been successful in increasing the accuracy of industrial robots. However, they have not always brought robotic accuracy within typical aerospace tolerances. Methods that have not yet been investigated to further optimize the use ANNs used in ML robot error compensation methods are presented in this paper. The focus of ML compensation methods has dominantly surrounded ANNs; there have been little to no investigations into other types of ML algorithms for their suitability as robot error compensation models. The success of ANNs to date proves the capability of ML algorithms for this task, and therefore other ML algorithms should be investigated to determine their capability to potentially improve industrial robot accuracy. This paper takes a novel approach by investigating the Support Vector Regression (SVR) ML algorithm to compensate for robot error. The ML models in this research were trained using measurement data captured using a laser tracker and collaborative robot. The ANN model reduced the mean error by 46.4%, 94.8%, and 95.8%, in the x, y, and z-axis, respectively. The SVR model reduced the mean error by 42.4%, 95.9%, and 98.4%, in the x, y, and z-axis, respectively, demonstrating its ability to be implemented as a robotic error compensation model. The success of both the ANN and SVR algorithms enforces the need for further research into other ML algorithms as robot error compensation models, and there is also still potential to further optimize the algorithms used.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
samchen完成签到,获得积分10
5秒前
HY应助Wangboyang采纳,获得10
6秒前
9秒前
9秒前
10秒前
tianfu1899发布了新的文献求助10
15秒前
17秒前
沙海沉戈完成签到,获得积分0
28秒前
kk_1315完成签到,获得积分0
29秒前
47秒前
zhangyueyue完成签到,获得积分10
59秒前
1分钟前
Kate发布了新的文献求助10
1分钟前
1分钟前
乐乐应助单原子的世界采纳,获得10
1分钟前
科研通AI6应助Kate采纳,获得10
1分钟前
1分钟前
哩哩完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Pluto发布了新的文献求助10
1分钟前
Shang完成签到 ,获得积分10
1分钟前
清脆靳发布了新的文献求助10
1分钟前
Xinghui关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
Kate发布了新的文献求助10
1分钟前
Xinghui发布了新的文献求助10
1分钟前
wder发布了新的文献求助10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
2分钟前
wanci应助Ni采纳,获得10
2分钟前
2分钟前
Ni发布了新的文献求助10
2分钟前
ding应助loopy采纳,获得10
2分钟前
细心白竹完成签到 ,获得积分10
2分钟前
科研通AI2S应助壮观的静芙采纳,获得10
2分钟前
Kate发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564906
求助须知:如何正确求助?哪些是违规求助? 4649603
关于积分的说明 14689175
捐赠科研通 4591564
什么是DOI,文献DOI怎么找? 2519229
邀请新用户注册赠送积分活动 1491891
关于科研通互助平台的介绍 1462916