Machine Learning Methods to Improve the Accuracy of Industrial Robots

机器人 补偿(心理学) 人工神经网络 人工智能 工业机器人 支持向量机 计算机科学 航空航天 机器学习 机器人学 控制工程 工程类 精神分析 心理学 航空航天工程
作者
Colm Higgins,Lauren McGarry,Joseph Butterfield,Adrian Murphy
出处
期刊:SAE technical paper series 被引量:4
标识
DOI:10.4271/2023-01-1000
摘要

<div class="section abstract"><div class="htmlview paragraph">There has been an ongoing need to increase the application of industrial robots to complete high-accuracy aerospace manufacturing and assembly tasks. However, the success of this is dependent on the ability of robotic systems to meet the tolerance requirements of the sector. Machine learning (ML) robot error compensation models have the potential to address this challenge. Artificial neural networks (ANNs) have been successful in increasing the accuracy of industrial robots. However, they have not always brought robotic accuracy within typical aerospace tolerances. Methods that have not yet been investigated to further optimize the use ANNs used in ML robot error compensation methods are presented in this paper. The focus of ML compensation methods has dominantly surrounded ANNs; there have been little to no investigations into other types of ML algorithms for their suitability as robot error compensation models. The success of ANNs to date proves the capability of ML algorithms for this task, and therefore other ML algorithms should be investigated to determine their capability to potentially improve industrial robot accuracy. This paper takes a novel approach by investigating the Support Vector Regression (SVR) ML algorithm to compensate for robot error. The ML models in this research were trained using measurement data captured using a laser tracker and collaborative robot. The ANN model reduced the mean error by 46.4%, 94.8%, and 95.8%, in the x, y, and z-axis, respectively. The SVR model reduced the mean error by 42.4%, 95.9%, and 98.4%, in the x, y, and z-axis, respectively, demonstrating its ability to be implemented as a robotic error compensation model. The success of both the ANN and SVR algorithms enforces the need for further research into other ML algorithms as robot error compensation models, and there is also still potential to further optimize the algorithms used.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dabiel1213完成签到,获得积分10
刚刚
2秒前
guoxihan完成签到,获得积分10
5秒前
科研通AI5应助U9A采纳,获得10
5秒前
Thinkol发布了新的文献求助10
5秒前
NovermberRain完成签到,获得积分10
8秒前
胡燕完成签到 ,获得积分10
10秒前
往前走别回头完成签到,获得积分10
11秒前
13秒前
阳光火车完成签到 ,获得积分10
14秒前
淡然以柳完成签到 ,获得积分10
15秒前
梦在远方完成签到 ,获得积分10
17秒前
隐形松完成签到 ,获得积分10
18秒前
醉清风完成签到 ,获得积分10
19秒前
安静严青完成签到 ,获得积分10
19秒前
故意的小猫咪关注了科研通微信公众号
20秒前
21秒前
畅快的念烟完成签到,获得积分10
26秒前
小太阳完成签到 ,获得积分10
31秒前
完美世界应助耿教授采纳,获得10
33秒前
昔昔完成签到 ,获得积分10
36秒前
echo完成签到 ,获得积分10
38秒前
39秒前
WN完成签到,获得积分10
43秒前
U9A发布了新的文献求助10
48秒前
感动依霜完成签到 ,获得积分10
50秒前
包容的忆灵完成签到 ,获得积分10
51秒前
曙光森林完成签到,获得积分10
54秒前
Silence完成签到 ,获得积分10
57秒前
陈M雯完成签到 ,获得积分10
1分钟前
loga80完成签到,获得积分0
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
特别圆的正方形完成签到 ,获得积分10
1分钟前
xy完成签到 ,获得积分10
1分钟前
赫连人杰完成签到,获得积分10
1分钟前
LLL完成签到 ,获得积分10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
阿狸完成签到 ,获得积分0
1分钟前
CJW完成签到 ,获得积分10
1分钟前
依依完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167368
捐赠科研通 3248732
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664