Machine Learning Methods to Improve the Accuracy of Industrial Robots

机器人 补偿(心理学) 人工神经网络 人工智能 工业机器人 支持向量机 计算机科学 航空航天 机器学习 机器人学 控制工程 工程类 精神分析 心理学 航空航天工程
作者
Colm Higgins,Lauren McGarry,Joseph Butterfield,Adrian Murphy
出处
期刊:SAE technical paper series 被引量:4
标识
DOI:10.4271/2023-01-1000
摘要

<div class="section abstract"><div class="htmlview paragraph">There has been an ongoing need to increase the application of industrial robots to complete high-accuracy aerospace manufacturing and assembly tasks. However, the success of this is dependent on the ability of robotic systems to meet the tolerance requirements of the sector. Machine learning (ML) robot error compensation models have the potential to address this challenge. Artificial neural networks (ANNs) have been successful in increasing the accuracy of industrial robots. However, they have not always brought robotic accuracy within typical aerospace tolerances. Methods that have not yet been investigated to further optimize the use ANNs used in ML robot error compensation methods are presented in this paper. The focus of ML compensation methods has dominantly surrounded ANNs; there have been little to no investigations into other types of ML algorithms for their suitability as robot error compensation models. The success of ANNs to date proves the capability of ML algorithms for this task, and therefore other ML algorithms should be investigated to determine their capability to potentially improve industrial robot accuracy. This paper takes a novel approach by investigating the Support Vector Regression (SVR) ML algorithm to compensate for robot error. The ML models in this research were trained using measurement data captured using a laser tracker and collaborative robot. The ANN model reduced the mean error by 46.4%, 94.8%, and 95.8%, in the x, y, and z-axis, respectively. The SVR model reduced the mean error by 42.4%, 95.9%, and 98.4%, in the x, y, and z-axis, respectively, demonstrating its ability to be implemented as a robotic error compensation model. The success of both the ANN and SVR algorithms enforces the need for further research into other ML algorithms as robot error compensation models, and there is also still potential to further optimize the algorithms used.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助顺利水杯采纳,获得10
刚刚
刚刚
明亮的溪灵完成签到,获得积分10
刚刚
1秒前
1秒前
充电宝应助01259采纳,获得10
1秒前
天真的莺完成签到,获得积分10
2秒前
想要赚大钱完成签到,获得积分10
2秒前
大模型应助徐慕源采纳,获得10
2秒前
格格星发布了新的文献求助10
4秒前
sunnyyty发布了新的文献求助10
5秒前
tanjianxin发布了新的文献求助10
5秒前
JIE发布了新的文献求助10
5秒前
安娜完成签到,获得积分10
5秒前
怕黑砖头发布了新的文献求助10
6秒前
科目三应助饭小心采纳,获得10
6秒前
6秒前
科研通AI2S应助花陵采纳,获得10
6秒前
善学以致用应助大吴克采纳,获得10
8秒前
老实雁蓉完成签到,获得积分10
8秒前
良辰应助zjh采纳,获得10
8秒前
yulong完成签到 ,获得积分10
9秒前
热心的早晨完成签到,获得积分10
9秒前
如此纠结完成签到,获得积分10
9秒前
多多就是小豆芽完成签到 ,获得积分10
10秒前
10秒前
Owen应助Lwxbb采纳,获得10
10秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
10秒前
小小杜完成签到,获得积分10
10秒前
初心完成签到,获得积分20
10秒前
丽丽完成签到 ,获得积分10
10秒前
学术蟑螂发布了新的文献求助10
10秒前
文艺的竺完成签到,获得积分10
11秒前
小林太郎应助斯奈克采纳,获得20
11秒前
11秒前
情怀应助执笔曦倾年采纳,获得10
11秒前
11秒前
11秒前
11秒前
科研民工完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740