Machine Learning Methods to Improve the Accuracy of Industrial Robots

机器人 补偿(心理学) 人工神经网络 人工智能 工业机器人 支持向量机 计算机科学 航空航天 机器学习 机器人学 控制工程 工程类 精神分析 心理学 航空航天工程
作者
Colm Higgins,Lauren McGarry,Joseph Butterfield,Adrian Murphy
出处
期刊:SAE technical paper series 被引量:3
标识
DOI:10.4271/2023-01-1000
摘要

<div class="section abstract"><div class="htmlview paragraph">There has been an ongoing need to increase the application of industrial robots to complete high-accuracy aerospace manufacturing and assembly tasks. However, the success of this is dependent on the ability of robotic systems to meet the tolerance requirements of the sector. Machine learning (ML) robot error compensation models have the potential to address this challenge. Artificial neural networks (ANNs) have been successful in increasing the accuracy of industrial robots. However, they have not always brought robotic accuracy within typical aerospace tolerances. Methods that have not yet been investigated to further optimize the use ANNs used in ML robot error compensation methods are presented in this paper. The focus of ML compensation methods has dominantly surrounded ANNs; there have been little to no investigations into other types of ML algorithms for their suitability as robot error compensation models. The success of ANNs to date proves the capability of ML algorithms for this task, and therefore other ML algorithms should be investigated to determine their capability to potentially improve industrial robot accuracy. This paper takes a novel approach by investigating the Support Vector Regression (SVR) ML algorithm to compensate for robot error. The ML models in this research were trained using measurement data captured using a laser tracker and collaborative robot. The ANN model reduced the mean error by 46.4%, 94.8%, and 95.8%, in the x, y, and z-axis, respectively. The SVR model reduced the mean error by 42.4%, 95.9%, and 98.4%, in the x, y, and z-axis, respectively, demonstrating its ability to be implemented as a robotic error compensation model. The success of both the ANN and SVR algorithms enforces the need for further research into other ML algorithms as robot error compensation models, and there is also still potential to further optimize the algorithms used.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起风了发布了新的文献求助10
刚刚
Ava应助田123采纳,获得10
1秒前
1秒前
牛又亦发布了新的文献求助10
2秒前
3秒前
ss发布了新的文献求助30
4秒前
hi小豆发布了新的文献求助10
6秒前
李健的小迷弟应助颜沛文采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
风中垣完成签到,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
迢迢笙箫应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
NexusExplorer应助MLi采纳,获得10
10秒前
10秒前
10秒前
华仔应助Lalala采纳,获得10
11秒前
12秒前
星星完成签到,获得积分20
14秒前
颜沛文发布了新的文献求助10
14秒前
15秒前
15秒前
翻翻发布了新的文献求助10
15秒前
15秒前
乔乔发布了新的文献求助10
15秒前
所所应助R喻andom采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721