已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Methods to Improve the Accuracy of Industrial Robots

机器人 补偿(心理学) 人工神经网络 人工智能 工业机器人 支持向量机 计算机科学 航空航天 机器学习 机器人学 控制工程 工程类 精神分析 心理学 航空航天工程
作者
Colm Higgins,Lauren McGarry,Joseph Butterfield,Adrian Murphy
出处
期刊:SAE technical paper series 被引量:4
标识
DOI:10.4271/2023-01-1000
摘要

<div class="section abstract"><div class="htmlview paragraph">There has been an ongoing need to increase the application of industrial robots to complete high-accuracy aerospace manufacturing and assembly tasks. However, the success of this is dependent on the ability of robotic systems to meet the tolerance requirements of the sector. Machine learning (ML) robot error compensation models have the potential to address this challenge. Artificial neural networks (ANNs) have been successful in increasing the accuracy of industrial robots. However, they have not always brought robotic accuracy within typical aerospace tolerances. Methods that have not yet been investigated to further optimize the use ANNs used in ML robot error compensation methods are presented in this paper. The focus of ML compensation methods has dominantly surrounded ANNs; there have been little to no investigations into other types of ML algorithms for their suitability as robot error compensation models. The success of ANNs to date proves the capability of ML algorithms for this task, and therefore other ML algorithms should be investigated to determine their capability to potentially improve industrial robot accuracy. This paper takes a novel approach by investigating the Support Vector Regression (SVR) ML algorithm to compensate for robot error. The ML models in this research were trained using measurement data captured using a laser tracker and collaborative robot. The ANN model reduced the mean error by 46.4%, 94.8%, and 95.8%, in the x, y, and z-axis, respectively. The SVR model reduced the mean error by 42.4%, 95.9%, and 98.4%, in the x, y, and z-axis, respectively, demonstrating its ability to be implemented as a robotic error compensation model. The success of both the ANN and SVR algorithms enforces the need for further research into other ML algorithms as robot error compensation models, and there is also still potential to further optimize the algorithms used.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
1秒前
啸西风发布了新的文献求助10
2秒前
wwmmyy完成签到 ,获得积分10
2秒前
可爱的函函应助张子捷采纳,获得10
3秒前
3秒前
zoey完成签到 ,获得积分10
6秒前
阳光问安完成签到 ,获得积分10
7秒前
Renie完成签到 ,获得积分10
7秒前
ASH完成签到 ,获得积分10
9秒前
长安完成签到 ,获得积分10
11秒前
11秒前
14秒前
15秒前
15秒前
阿航发布了新的文献求助10
15秒前
科研通AI6应助MikuMiya采纳,获得10
16秒前
16秒前
Sheila完成签到 ,获得积分10
17秒前
生化爱科研完成签到,获得积分10
19秒前
欢喜菠萝完成签到 ,获得积分10
20秒前
25秒前
星辰大海应助1111颂采纳,获得30
26秒前
26秒前
Criminology34应助听雨的猫采纳,获得10
27秒前
悄悄完成签到 ,获得积分10
30秒前
水晶鞋完成签到 ,获得积分10
30秒前
32秒前
深情安青应助阿航采纳,获得10
33秒前
艺葛荏殇芯完成签到 ,获得积分10
37秒前
41秒前
POLYSER发布了新的文献求助10
42秒前
123456完成签到 ,获得积分10
42秒前
薄荷蓝完成签到,获得积分10
48秒前
123a应助雨季采纳,获得10
50秒前
50秒前
虚幻寄文完成签到 ,获得积分10
50秒前
蓝白完成签到,获得积分10
53秒前
54秒前
黄飚完成签到,获得积分10
55秒前
yanxuhuan完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418110
求助须知:如何正确求助?哪些是违规求助? 4533794
关于积分的说明 14142309
捐赠科研通 4450087
什么是DOI,文献DOI怎么找? 2441088
邀请新用户注册赠送积分活动 1432850
关于科研通互助平台的介绍 1410039