亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Methods to Improve the Accuracy of Industrial Robots

机器人 补偿(心理学) 人工神经网络 人工智能 工业机器人 支持向量机 计算机科学 航空航天 机器学习 机器人学 控制工程 工程类 精神分析 心理学 航空航天工程
作者
Colm Higgins,Lauren McGarry,Joseph Butterfield,Adrian Murphy
出处
期刊:SAE technical paper series 被引量:4
标识
DOI:10.4271/2023-01-1000
摘要

<div class="section abstract"><div class="htmlview paragraph">There has been an ongoing need to increase the application of industrial robots to complete high-accuracy aerospace manufacturing and assembly tasks. However, the success of this is dependent on the ability of robotic systems to meet the tolerance requirements of the sector. Machine learning (ML) robot error compensation models have the potential to address this challenge. Artificial neural networks (ANNs) have been successful in increasing the accuracy of industrial robots. However, they have not always brought robotic accuracy within typical aerospace tolerances. Methods that have not yet been investigated to further optimize the use ANNs used in ML robot error compensation methods are presented in this paper. The focus of ML compensation methods has dominantly surrounded ANNs; there have been little to no investigations into other types of ML algorithms for their suitability as robot error compensation models. The success of ANNs to date proves the capability of ML algorithms for this task, and therefore other ML algorithms should be investigated to determine their capability to potentially improve industrial robot accuracy. This paper takes a novel approach by investigating the Support Vector Regression (SVR) ML algorithm to compensate for robot error. The ML models in this research were trained using measurement data captured using a laser tracker and collaborative robot. The ANN model reduced the mean error by 46.4%, 94.8%, and 95.8%, in the x, y, and z-axis, respectively. The SVR model reduced the mean error by 42.4%, 95.9%, and 98.4%, in the x, y, and z-axis, respectively, demonstrating its ability to be implemented as a robotic error compensation model. The success of both the ANN and SVR algorithms enforces the need for further research into other ML algorithms as robot error compensation models, and there is also still potential to further optimize the algorithms used.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
千里草完成签到,获得积分10
1分钟前
2分钟前
心想柿橙发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星际舟完成签到,获得积分10
2分钟前
QCB完成签到 ,获得积分10
3分钟前
小马甲应助Kevin采纳,获得10
3分钟前
KSDalton完成签到,获得积分10
3分钟前
xiaxia完成签到,获得积分10
4分钟前
xiaxia发布了新的文献求助50
4分钟前
胡可完成签到 ,获得积分10
4分钟前
5分钟前
xiaxia发布了新的文献求助30
5分钟前
juan完成签到 ,获得积分10
6分钟前
ldjldj_2004完成签到 ,获得积分10
6分钟前
传奇3应助xiaxia采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
fighting发布了新的文献求助10
7分钟前
冷傲半邪完成签到,获得积分10
7分钟前
Hello应助安静的睿渊采纳,获得10
7分钟前
科研通AI6应助fighting采纳,获得10
7分钟前
7分钟前
xiaxia发布了新的文献求助10
8分钟前
8分钟前
fighting发布了新的文献求助10
8分钟前
8分钟前
xiaxia发布了新的文献求助30
8分钟前
在水一方应助樱岛流京子采纳,获得10
8分钟前
科研通AI5应助xiaxia采纳,获得30
9分钟前
9分钟前
kouun发布了新的文献求助10
9分钟前
积极的迎梦完成签到 ,获得积分10
9分钟前
淡然的剑通完成签到 ,获得积分10
10分钟前
Criminology34应助科研通管家采纳,获得20
10分钟前
Criminology34应助科研通管家采纳,获得20
10分钟前
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111129
捐赠科研通 3997013
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712