Identification of necroptosis-related genes as prognostic indicators for lower-grade glioma.

坏死性下垂 列线图 比例危险模型 基因 病态的 肿瘤科 胶质瘤 内科学 生物 弗雷明翰风险评分 生存分析 细胞凋亡 癌症研究 医学 程序性细胞死亡 疾病 遗传学
作者
Xiaowan Huang,Somayeh Vafaei,Lingxia Li,Yunjiu Wang,Jian Sun,Yuzhen Gao,Jue Zhang
出处
期刊:PubMed 卷期号:13 (2): 692-708
链接
标识
摘要

The purpose of this research is to develop a predictive model based on necroptosis-related genes to predict the prognosis and survival of lower grade gliomas (LGGs) efficiently. To achieve this goal, we searched for differentially expressed necrotizing apoptosis-related genes using the TCGA and CGGA databases. To construct a prognostic model, LASSO Cox and COX regression analyses were conducted on the differentially expressed genes. In this study, three genes were used to develop a prognostic model of necrotizing apoptosis, and all samples were split into high- and low-risk groups. We observed that patients with a high-risk score had a worse overall survival rate (OS) than those with a low-risk score. In the TCGA and CGGA cohorts, the nomogram plot showed a high capacity to predict overall survival of LGG patients. GSEA analysis revealed that the high-risk group was enriched for inflammatory responses, tumor-related pathways, and pathological processes. Additionally, the high-risk score was associated with invading immune cell expression. In conclusion, our predictive model based on necroptosis-related genes in LGG was shown to be effective in the diagnosis and could predict the prognosis of LGG. In addition, we identified possible targets related to necroptosis-related genes for glioma therapy in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
知之然完成签到,获得积分10
刚刚
研友_n2QP2L完成签到,获得积分10
刚刚
Lucas应助安静听白采纳,获得10
刚刚
CC发布了新的文献求助10
刚刚
星辰大海应助系统提示采纳,获得10
1秒前
1秒前
sss完成签到,获得积分10
1秒前
1秒前
板凳完成签到,获得积分10
2秒前
单纯访枫发布了新的文献求助30
2秒前
bin0920发布了新的文献求助10
2秒前
aaaaaa完成签到,获得积分10
3秒前
tangsuyun完成签到,获得积分20
3秒前
MADKAI发布了新的文献求助50
3秒前
大方小白完成签到,获得积分10
3秒前
xiaokezhang发布了新的文献求助10
3秒前
3秒前
zhenzhen发布了新的文献求助10
4秒前
4秒前
hz_sz完成签到,获得积分10
5秒前
5秒前
空白完成签到,获得积分10
5秒前
所所应助合适苗条采纳,获得10
5秒前
专注易绿完成签到,获得积分10
6秒前
Anne应助吱嗷赵采纳,获得10
6秒前
xin应助666采纳,获得20
7秒前
YY发布了新的文献求助10
7秒前
7秒前
huanhuan完成签到,获得积分10
8秒前
小刘不笨完成签到,获得积分10
8秒前
吕绪特完成签到 ,获得积分10
8秒前
9秒前
愉快的夏菡完成签到,获得积分10
9秒前
研友_gnv61n完成签到,获得积分10
9秒前
zmy完成签到,获得积分10
9秒前
小蘑菇应助守约采纳,获得10
10秒前
10秒前
空白发布了新的文献求助10
11秒前
buno应助721采纳,获得20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678