Predictors of relapse in Takayasu arteritis

医学 内科学 血管炎 比例危险模型 动脉炎 队列 前瞻性队列研究 巨细胞动脉炎 心脏病学 胃肠病学 疾病
作者
Shiping He,Ruofan Li,Shangyi Jin,Yanhong Wang,Hongbin Li,Xinwang Duan,Lili Pan,Lijun Wu,Yongfu Wang,Yan Zhang,Zhenbiao Wu,Jing Li,Yunjiao Yang,Xinping Tian,Xiaofeng Zeng
出处
期刊:European Journal of Internal Medicine [Elsevier]
标识
DOI:10.1016/j.ejim.2023.02.027
摘要

Takayasu arteritis (TAK) is a large-vessel vasculitis with high relapse rate. Longitudinal studies identifying risk factors of relapse are limited. We aimed to analyze the associated factors and develop a risk prediction model for relapse.We analyzed the associated factors for relapse in a prospective cohort of 549 TAK patients from the Chinese Registry of Systemic Vasculitis cohort between June 2014 and December 2021 using univariate and multivariate Cox regression analyses. We also developed a prediction model for relapse, and stratified patients into low-, medium-, and high-risk groups. Discrimination and calibration were measured using C-index and calibration plots.At a median follow-up of 44 (IQR 26-62) months, 276 (50.3%) patients experienced relapses. History of relapse (HR 2.78 [2.14-3.60]), disease duration <24 months (HR 1.78 [1.37-2.32]), history of cerebrovascular events (HR 1.55 [1.12-2.16]), aneurysm (HR 1.49 [1.10-2.04], ascending aorta or aortic arch involvement (HR 1.37 [1.05-1.79]), elevated high-sensitivity C-reactive protein level (HR 1.34 [1.03-1.73]), elevated white blood cell count (HR 1.32 [1.03-1.69]), and the number of involved arteries ≥6 (HR 1.31 [1.00-1.72]) at baseline independently increased the risk of relapse and were included in the prediction model. The C-index of the prediction model was 0.70 (95% CI 0.67-0.74). Predictions correlated with observed outcomes on the calibration plots. Compared to the low-risk group, both medium and high-risk groups had a significantly higher relapse risk.Disease relapse is common in TAK patients. This prediction model may help to identify high-risk patients for relapse and assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分20
刚刚
刚刚
刚刚
yoon发布了新的文献求助10
刚刚
脑洞疼应助香蕉静芙采纳,获得10
刚刚
JTB完成签到,获得积分10
刚刚
1秒前
慕涔发布了新的文献求助10
1秒前
王磊完成签到,获得积分10
1秒前
梧桐的灯完成签到 ,获得积分10
1秒前
传奇3应助轩辕德地采纳,获得10
1秒前
Arnold完成签到,获得积分20
1秒前
倪妮发布了新的文献求助10
2秒前
Island完成签到,获得积分10
2秒前
LiZheng完成签到,获得积分10
2秒前
深情安青应助致橡树采纳,获得10
3秒前
Leeon完成签到,获得积分10
3秒前
李来仪完成签到,获得积分10
3秒前
打打应助unicornmed采纳,获得10
3秒前
Eddy发布了新的文献求助10
4秒前
体贴远山完成签到,获得积分10
5秒前
顾矜应助贤惠的正豪采纳,获得10
5秒前
5秒前
6秒前
无限的隶发布了新的文献求助10
6秒前
南木_完成签到,获得积分10
7秒前
笙歌自若完成签到,获得积分10
7秒前
7秒前
Akim应助江梦松采纳,获得10
7秒前
科研小民工应助认真的一刀采纳,获得200
8秒前
8秒前
猫樊完成签到,获得积分10
8秒前
hf完成签到,获得积分20
8秒前
灵明完成签到,获得积分10
8秒前
慕涔完成签到,获得积分10
9秒前
kingwill应助沐风采纳,获得30
9秒前
9秒前
陈龙完成签到,获得积分10
9秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762