Leveraging Unsupervised and Self-Supervised Learning for Video Anomaly Detection

异常检测 计算机科学 无监督学习 人工智能 监督学习 机器学习 模式识别(心理学) 人工神经网络
作者
Devashish Lohani,Carlos F Crispim-Junior,Quentin Barthélemy,Sarah J. Bertrand,Lionel Robinault,Laure Tougne
标识
DOI:10.5220/0011663600003417
摘要

Video anomaly detection consists of detecting abnormal events in videos.Since abnormal events are rare, anomaly detection methods are mainly not fully supervised.One such popular family of methods learn normality by training an autoencoder (AE) on normal data and detect anomalies as they deviate from this normality.But the powerful reconstruction capacity of AE makes it still difficult to separate anomalies from normality.To address this issue, some works enhance the AE with an external memory bank or attention modules but still these methods suffer in detecting diverse spatial and temporal anomalies.In this work, we propose a method that leverages unsupervised and self-supervised learning on a single AE.The AE is trained in an end-to-end manner and jointly learns to discriminate anomalies using three chosen tasks: (i) unsupervised video clip reconstruction; (ii) unsupervised future frame prediction; (iii) self-supervised playback rate prediction.Furthermore, to correctly emphasize the detected anomalous regions in the video, we introduce a new error measure, called the blur pooled error.Our experiments reveal that the chosen tasks enrich the representational capability of the autoencoder to detect anomalous events in videos.Results demonstrate our approach outperforms the state-of-the-art methods on three public video anomaly datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董菲音发布了新的文献求助10
2秒前
2秒前
Akim应助Puokn采纳,获得10
2秒前
insane完成签到,获得积分10
3秒前
NexusExplorer应助飞飞鱼采纳,获得10
3秒前
5秒前
季涵卿发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
VirgoYn发布了新的文献求助10
7秒前
烟花应助xiaozhuoolife采纳,获得10
7秒前
英勇沧海完成签到,获得积分20
7秒前
nenoaowu发布了新的文献求助10
9秒前
9秒前
董菲音完成签到,获得积分10
10秒前
11秒前
penglin发布了新的文献求助10
11秒前
12秒前
15秒前
陈大爷发布了新的文献求助10
16秒前
17秒前
18秒前
Mint发布了新的文献求助10
20秒前
Hou发布了新的文献求助100
20秒前
22秒前
赘婿应助腼腆的雅绿采纳,获得10
22秒前
莫大发布了新的文献求助10
22秒前
23秒前
季涵卿发布了新的文献求助10
23秒前
卡沙巴完成签到,获得积分10
23秒前
yystudy完成签到,获得积分10
24秒前
雪艇完成签到,获得积分10
25秒前
26秒前
Orange应助long采纳,获得10
26秒前
搜集达人应助ljq采纳,获得10
27秒前
27秒前
Foremelon发布了新的文献求助20
28秒前
28秒前
她说她叫柠檬完成签到,获得积分10
29秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206645
求助须知:如何正确求助?哪些是违规求助? 2856117
关于积分的说明 8102483
捐赠科研通 2521133
什么是DOI,文献DOI怎么找? 1354220
科研通“疑难数据库(出版商)”最低求助积分说明 641992
邀请新用户注册赠送积分活动 613192