Development and validation of sex-specific hip fracture prediction models using electronic health records: a retrospective, population-based cohort study

医学 髋部骨折 队列 回顾性队列研究 逻辑回归 骨质疏松症 队列研究 置信区间 病历 人口 物理疗法 内科学 环境卫生
作者
Gloria Hoi-Yee Li,Ching-Lung Cheung,Kathryn C.B. Tan,Annie W. C. Kung,Timothy Kwok,Wallis Cheuk-Yin Lau,Janus Siu-Him Wong,Warrington W.Q. Hsu,Christian Fang,Ian C K Wong
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:58: 101876-101876
标识
DOI:10.1016/j.eclinm.2023.101876
摘要

Hip fracture is associated with immobility, morbidity, mortality, and high medical cost. Due to limited availability of dual-energy X-ray absorptiometry (DXA), hip fracture prediction models without using bone mineral density (BMD) data are essential. We aimed to develop and validate 10-year sex-specific hip fracture prediction models using electronic health records (EHR) without BMD.In this retrospective, population-based cohort study, anonymized medical records were retrieved from the Clinical Data Analysis and Reporting System for public healthcare service users in Hong Kong aged ≥60 years as of 31 December 2005. A total of 161,051 individuals (91,926 female; 69,125 male) with complete follow-up from 1 January 2006 till the study end date on 31 December 2015 were included in the derivation cohort. The sex-stratified derivation cohort was randomly divided into 80% training and 20% internal testing datasets. An independent validation cohort comprised 3046 community-dwelling participants aged ≥60 years as of 31 December 2005 from the Hong Kong Osteoporosis Study, a prospective cohort which recruited participants between 1995 and 2010. With 395 potential predictors (age, diagnosis, and drug prescription records from EHR), 10-year sex-specific hip fracture prediction models were developed using stepwise selection by logistic regression (LR) and four machine learning (ML) algorithms (gradient boosting machine, random forest, eXtreme gradient boosting, and single-layer neural networks) in the training cohort. Model performance was evaluated in both internal and independent validation cohorts.In female, the LR model had the highest AUC (0.815; 95% Confidence Interval [CI]: 0.805-0.825) and adequate calibration in internal validation. Reclassification metrics showed the LR model had better discrimination and classification performance than the ML algorithms. Similar performance was attained by the LR model in independent validation, with high AUC (0.841; 95% CI: 0.807-0.87) comparable to other ML algorithms. In internal validation for male, LR model had high AUC (0.818; 95% CI: 0.801-0.834) and it outperformed all ML models as indicated by reclassification metrics, with adequate calibration. In independent validation, the LR model had high AUC (0.898; 95% CI: 0.857-0.939) comparable to ML algorithms. Reclassification metrics demonstrated that LR model had the best discrimination performance.Even without using BMD data, the 10-year hip fracture prediction models developed by conventional LR had better discrimination performance than the models developed by ML algorithms. Upon further validation in independent cohorts, the LR models could be integrated into the routine clinical workflow, aiding the identification of people at high risk for DXA scan.Health and Medical Research Fund, Health Bureau, Hong Kong SAR Government (reference: 17181381).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tramp应助七星龙渊采纳,获得20
1秒前
Shaynin完成签到,获得积分10
2秒前
求大佬帮助完成签到,获得积分10
2秒前
HaoDeng发布了新的文献求助10
3秒前
姚美丽完成签到 ,获得积分10
4秒前
4秒前
cinn完成签到 ,获得积分10
5秒前
通达完成签到,获得积分10
5秒前
5秒前
He完成签到,获得积分10
6秒前
喜静完成签到 ,获得积分10
6秒前
柒月完成签到 ,获得积分10
7秒前
YQT完成签到 ,获得积分10
8秒前
lunar发布了新的文献求助10
11秒前
11秒前
joyce完成签到,获得积分10
12秒前
12秒前
14秒前
HaoDeng完成签到,获得积分10
14秒前
心心发布了新的文献求助10
15秒前
运敬完成签到 ,获得积分10
17秒前
khaosyi完成签到 ,获得积分10
17秒前
Bismarck发布了新的文献求助10
19秒前
万能的土豆完成签到 ,获得积分10
22秒前
大模型应助DUTlh采纳,获得10
22秒前
科研通AI2S应助豪的花花采纳,获得10
23秒前
虚心的仙人掌完成签到,获得积分10
23秒前
courage完成签到 ,获得积分10
23秒前
25秒前
思维完成签到,获得积分10
25秒前
26秒前
26秒前
Lucas应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
28秒前
须臾发布了新的文献求助30
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
无花果应助foxdaopo采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
28秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165255
求助须知:如何正确求助?哪些是违规求助? 2816291
关于积分的说明 7912153
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318458
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388