已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Machine Learning to Expedite the Screening of Environmental Factors Associated with the Risk of Spontaneous Preterm Birth: From Exposure Mixtures to Key Molecular Events

逻辑回归 随机森林 脂类学 梯度升压 风险评估 生物 医学 生物信息学 计算机科学 内科学 机器学习 计算机安全
作者
Yanqiu Feng,Shu Su,Weinan Lin,Mengyuan Ren,Ning Gao,Bo Pan,Le Zhang,Lei Jin,Yuling Li,Zhiwen Li,Rongwei Ye,Aiguo Ren,Bin Wang
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:10 (11): 1036-1044 被引量:1
标识
DOI:10.1021/acs.estlett.3c00085
摘要

Spontaneous preterm birth (SPB) is affected by various environmental exposures. However, there is still an urgent need to efficiently integrate exposomic information to build its prediction model and unveil the potential toxic pathways. Here, we conducted a nested case-control study by recruiting 30 women with SPB delivery (cases) and 30 women without (controls) at their early pregnancy. We analyzed various biomarkers of external chemical exposure, lipidomics, and immunity, resulting in 1081 exposure features. A logistic regression model (LR) was used to screen potential risk factors, and four statistical learners were used to establish SPB prediction models. Overall, the serum lipid concentration in cases was higher than in controls, while this was not the case for chemical and immune biomarkers. Random forest (RF) and extreme gradient boosting (XGboost) models had a relatively higher prediction accuracy of > 90%. Glycerophospholipids (GP) were the most abundant lipidomic features screened by LR, RF, and XGboost models, followed by glycerolipids and sphingolipids, shown as well as by enrichment analysis. Moreover, FA(21:0) had the largest contribution to the prediction performance. Maternal exposure to various elements can contribute to SPB risk due to their interaction with GP metabolism. Therefore, it is promising to use exposomic data to predict SPB risk and screen key molecular events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性绫完成签到,获得积分10
刚刚
刚刚
Orange应助莉莉采纳,获得10
2秒前
111发布了新的文献求助10
2秒前
mushanes完成签到 ,获得积分10
3秒前
zhangfuchao发布了新的文献求助10
4秒前
10秒前
未晚完成签到 ,获得积分10
10秒前
10秒前
上官若男应助遇见馅儿饼采纳,获得10
11秒前
嗯哼应助Jalinezz采纳,获得20
13秒前
李李完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
AM发布了新的文献求助10
16秒前
zzw发布了新的文献求助200
17秒前
李李发布了新的文献求助10
17秒前
菠萝完成签到 ,获得积分10
19秒前
卢文静发布了新的文献求助10
20秒前
20秒前
YifanWang给chenshi0515的求助进行了留言
21秒前
27秒前
小蘑菇应助二两采纳,获得10
29秒前
29秒前
Sisi完成签到,获得积分20
31秒前
星辰大海应助维夏十一采纳,获得10
31秒前
彭于晏应助科研通管家采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
33秒前
ly应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
bkagyin应助科研通管家采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
34秒前
34秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
36秒前
37秒前
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307142
求助须知:如何正确求助?哪些是违规求助? 2940917
关于积分的说明 8499435
捐赠科研通 2615110
什么是DOI,文献DOI怎么找? 1428672
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648355