Using Machine Learning to Expedite the Screening of Environmental Factors Associated with the Risk of Spontaneous Preterm Birth: From Exposure Mixtures to Key Molecular Events

逻辑回归 随机森林 脂类学 梯度升压 风险评估 生物 生物信息学 计算机科学 机器学习 计算机安全
作者
Yanqiu Feng,Shu Su,Weinan Lin,Mengyuan Ren,Ning Gao,Bo Pan,Le Zhang,Lei Jin,Yali Zhang,Zhiwen Li,Rongwei Ye,Aiguo Ren,Bin Wang
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:10 (11): 1036-1044 被引量:3
标识
DOI:10.1021/acs.estlett.3c00085
摘要

Spontaneous preterm birth (SPB) is affected by various environmental exposures. However, there is still an urgent need to efficiently integrate exposomic information to build its prediction model and unveil the potential toxic pathways. Here, we conducted a nested case-control study by recruiting 30 women with SPB delivery (cases) and 30 women without (controls) at their early pregnancy. We analyzed various biomarkers of external chemical exposure, lipidomics, and immunity, resulting in 1081 exposure features. A logistic regression model (LR) was used to screen potential risk factors, and four statistical learners were used to establish SPB prediction models. Overall, the serum lipid concentration in cases was higher than in controls, while this was not the case for chemical and immune biomarkers. Random forest (RF) and extreme gradient boosting (XGboost) models had a relatively higher prediction accuracy of > 90%. Glycerophospholipids (GP) were the most abundant lipidomic features screened by LR, RF, and XGboost models, followed by glycerolipids and sphingolipids, shown as well as by enrichment analysis. Moreover, FA(21:0) had the largest contribution to the prediction performance. Maternal exposure to various elements can contribute to SPB risk due to their interaction with GP metabolism. Therefore, it is promising to use exposomic data to predict SPB risk and screen key molecular events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助顺利又菱采纳,获得10
刚刚
刚刚
刚刚
13223456完成签到,获得积分10
1秒前
YDX发布了新的文献求助10
1秒前
美好怀亦给美好怀亦的求助进行了留言
1秒前
2秒前
专注的问寒应助Rjy采纳,获得20
2秒前
3秒前
5秒前
5秒前
6秒前
万能图书馆应助诚心谷南采纳,获得10
6秒前
13223456发布了新的文献求助10
6秒前
7秒前
Akim应助称心长颈鹿采纳,获得10
8秒前
lemonlmm发布了新的文献求助10
8秒前
Rocky_Qi完成签到,获得积分10
8秒前
雷Lei完成签到,获得积分10
9秒前
Nick爱学习发布了新的文献求助10
9秒前
10秒前
天真的幻露完成签到,获得积分10
10秒前
11秒前
12秒前
考博圣体发布了新的文献求助10
12秒前
文艺谷蓝发布了新的文献求助10
12秒前
CC发布了新的文献求助10
14秒前
桐桐应助11111采纳,获得10
15秒前
wwy应助YDX采纳,获得10
15秒前
浮游应助柠檬采纳,获得10
15秒前
16秒前
17秒前
18秒前
18秒前
19秒前
三三完成签到,获得积分10
19秒前
19秒前
19秒前
新年发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636998
求助须知:如何正确求助?哪些是违规求助? 4742430
关于积分的说明 14997256
捐赠科研通 4795195
什么是DOI,文献DOI怎么找? 2561870
邀请新用户注册赠送积分活动 1521362
关于科研通互助平台的介绍 1481478