Multirate Mixture Probability Principal Component Analysis for Process Monitoring in Multimode Processes

主成分分析 采样(信号处理) 故障检测与隔离 算法 计算机科学 组分(热力学) 概率逻辑 过程(计算) 水准点(测量) 随机过程 数据挖掘 数学 人工智能 统计 滤波器(信号处理) 执行机构 计算机视觉 热力学 地理 操作系统 物理 大地测量学
作者
Yuting Lyu,Le Zhou,Ya Cong,Hongbo Zheng,Zhihuan Song
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:26
标识
DOI:10.1109/tase.2023.3253285
摘要

In the multirate sampling processes, the process data are usually collected from various operating conditions and display multimodal characteristics. To monitor these multirate multimode processes, a multirate mixture probability principal component analysis model is proposed for process modeling and fault detection. In this model, the local multirate models are built first for each mode and all of them are subsequently fused with the mixture modeling approach. Such model is able to deal with multirate data with various amount of sampling rates, contributing to a remarkable fault detection and mode identification performance by utilizing all the available measurements even if some variables are unobserved. Then the expectation $-$ maximum algorithm is utilized to estimate all the model parameters in the probabilistic framework and the corresponding monitoring method is also developed based on the constructed models. Finally, the effectiveness of the proposed method is demonstrated through a PRONTO benchmark and a real multimode ammonia synthesis process. Note to Practitioners —Motivated by the practical problem of ununiform sampling intervals in multimode processes, this paper proposes a novel multirate mixture probability principle component analysis model for processes modeling and monitoring. In this model, all the available observations with different sampling rates can be incorporated, which contributes greatly to capturing the multimodal characteristics within the industrial processes. Such ability is the key to realize multimode process monitoring, evaluation, fault diagnosis, and process optimization. In addition, although this paper only focuses on the continuous multirate data in industry, it is equally applicable to other forms of multirate data, such as images and videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zxl完成签到,获得积分10
2秒前
专心搞学术完成签到,获得积分10
2秒前
FFF发布了新的文献求助10
2秒前
李小胖发布了新的文献求助20
2秒前
李健应助故意的绿竹采纳,获得10
2秒前
勤恳的断秋完成签到 ,获得积分10
3秒前
VDC发布了新的文献求助10
3秒前
3秒前
jasmine970000发布了新的文献求助100
3秒前
酷波er应助camellia采纳,获得10
4秒前
Zoe发布了新的文献求助10
4秒前
4秒前
4秒前
啊实打实完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
参上完成签到,获得积分10
7秒前
mingjie完成签到,获得积分10
7秒前
yam001完成签到,获得积分10
7秒前
aaaaa发布了新的文献求助10
7秒前
8秒前
牧紫菱完成签到,获得积分10
8秒前
9秒前
研友_RLN0vZ发布了新的文献求助10
9秒前
9秒前
9秒前
神勇的雅香应助001采纳,获得10
10秒前
研友_V8RDYn完成签到,获得积分10
10秒前
zzznznnn发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
FFFFFFF应助晓军采纳,获得10
13秒前
wanci应助艺玲采纳,获得10
13秒前
jfc完成签到 ,获得积分10
13秒前
香蕉觅云应助月白采纳,获得10
13秒前
思源应助mmx采纳,获得10
13秒前
Diaory2023完成签到 ,获得积分0
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762