亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multirate Mixture Probability Principal Component Analysis for Process Monitoring in Multimode Processes

主成分分析 采样(信号处理) 故障检测与隔离 算法 计算机科学 组分(热力学) 概率逻辑 过程(计算) 水准点(测量) 随机过程 数据挖掘 数学 人工智能 统计 滤波器(信号处理) 物理 操作系统 热力学 计算机视觉 执行机构 大地测量学 地理
作者
Yuting Lyu,Le Zhou,Ya Cong,Hongbo Zheng,Zhihuan Song
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 2027-2038 被引量:38
标识
DOI:10.1109/tase.2023.3253285
摘要

In the multirate sampling processes, the process data are usually collected from various operating conditions and display multimodal characteristics. To monitor these multirate multimode processes, a multirate mixture probability principal component analysis model is proposed for process modeling and fault detection. In this model, the local multirate models are built first for each mode and all of them are subsequently fused with the mixture modeling approach. Such model is able to deal with multirate data with various amount of sampling rates, contributing to a remarkable fault detection and mode identification performance by utilizing all the available measurements even if some variables are unobserved. Then the expectation $-$ maximum algorithm is utilized to estimate all the model parameters in the probabilistic framework and the corresponding monitoring method is also developed based on the constructed models. Finally, the effectiveness of the proposed method is demonstrated through a PRONTO benchmark and a real multimode ammonia synthesis process. Note to Practitioners —Motivated by the practical problem of ununiform sampling intervals in multimode processes, this paper proposes a novel multirate mixture probability principle component analysis model for processes modeling and monitoring. In this model, all the available observations with different sampling rates can be incorporated, which contributes greatly to capturing the multimodal characteristics within the industrial processes. Such ability is the key to realize multimode process monitoring, evaluation, fault diagnosis, and process optimization. In addition, although this paper only focuses on the continuous multirate data in industry, it is equally applicable to other forms of multirate data, such as images and videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
13秒前
shaonianzu完成签到 ,获得积分10
14秒前
15秒前
淡然发布了新的文献求助10
15秒前
budingman发布了新的文献求助30
17秒前
友好钢笔发布了新的文献求助10
27秒前
科研通AI2S应助彩色的谷云采纳,获得30
34秒前
成博应助友好钢笔采纳,获得10
42秒前
友好钢笔完成签到,获得积分10
49秒前
小蘑菇应助科研通管家采纳,获得10
54秒前
星辰大海应助科研通管家采纳,获得10
54秒前
脑洞疼应助科研通管家采纳,获得10
54秒前
1分钟前
pjxxx完成签到 ,获得积分10
1分钟前
1分钟前
hgsgeospan完成签到,获得积分10
2分钟前
hgs完成签到,获得积分10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
2分钟前
FIGGIEKIO发布了新的文献求助10
3分钟前
blenx完成签到,获得积分10
3分钟前
健壮的花瓣完成签到 ,获得积分10
3分钟前
上官若男应助FIGGIEKIO采纳,获得10
3分钟前
SYLH应助冷静新烟采纳,获得10
4分钟前
上官若男应助tttttttttttt采纳,获得10
4分钟前
4分钟前
tttttttttttt发布了新的文献求助10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
可乐加冰完成签到 ,获得积分10
5分钟前
SYLH应助冷静新烟采纳,获得10
5分钟前
5分钟前
Hayat应助彩色的谷云采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
FashionBoy应助嘿嘿嘿侦探社采纳,获得10
6分钟前
6分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
英俊的铭应助科研通管家采纳,获得30
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968489
求助须知:如何正确求助?哪些是违规求助? 3513276
关于积分的说明 11167188
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794377
邀请新用户注册赠送积分活动 875027
科研通“疑难数据库(出版商)”最低求助积分说明 804638