Multirate Mixture Probability Principal Component Analysis for Process Monitoring in Multimode Processes

主成分分析 采样(信号处理) 故障检测与隔离 算法 计算机科学 组分(热力学) 概率逻辑 过程(计算) 水准点(测量) 随机过程 数据挖掘 数学 人工智能 统计 滤波器(信号处理) 执行机构 计算机视觉 热力学 地理 操作系统 物理 大地测量学
作者
Yuting Lyu,Le Zhou,Ya Cong,Hongbo Zheng,Zhihuan Song
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:26
标识
DOI:10.1109/tase.2023.3253285
摘要

In the multirate sampling processes, the process data are usually collected from various operating conditions and display multimodal characteristics. To monitor these multirate multimode processes, a multirate mixture probability principal component analysis model is proposed for process modeling and fault detection. In this model, the local multirate models are built first for each mode and all of them are subsequently fused with the mixture modeling approach. Such model is able to deal with multirate data with various amount of sampling rates, contributing to a remarkable fault detection and mode identification performance by utilizing all the available measurements even if some variables are unobserved. Then the expectation $-$ maximum algorithm is utilized to estimate all the model parameters in the probabilistic framework and the corresponding monitoring method is also developed based on the constructed models. Finally, the effectiveness of the proposed method is demonstrated through a PRONTO benchmark and a real multimode ammonia synthesis process. Note to Practitioners —Motivated by the practical problem of ununiform sampling intervals in multimode processes, this paper proposes a novel multirate mixture probability principle component analysis model for processes modeling and monitoring. In this model, all the available observations with different sampling rates can be incorporated, which contributes greatly to capturing the multimodal characteristics within the industrial processes. Such ability is the key to realize multimode process monitoring, evaluation, fault diagnosis, and process optimization. In addition, although this paper only focuses on the continuous multirate data in industry, it is equally applicable to other forms of multirate data, such as images and videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nhb0912发布了新的文献求助10
1秒前
1秒前
完美世界应助韩熙采纳,获得10
1秒前
打打应助zzz采纳,获得10
2秒前
3秒前
Avert.完成签到 ,获得积分10
3秒前
万能图书馆应助xiexiaopa采纳,获得10
4秒前
ynscw应助乐橙采纳,获得20
4秒前
Cary发布了新的文献求助10
4秒前
4秒前
苹果鸽子完成签到,获得积分10
4秒前
4秒前
默默的硬币完成签到,获得积分10
5秒前
无花果应助wilsonht采纳,获得30
5秒前
5秒前
苗儿完成签到,获得积分20
5秒前
着急的寒梅完成签到 ,获得积分10
6秒前
华仔应助ykk采纳,获得10
6秒前
aliupeifang完成签到,获得积分10
6秒前
Gin发布了新的文献求助10
6秒前
啊哦嘿发布了新的文献求助10
7秒前
玩命的大侠完成签到,获得积分10
7秒前
花心的小白菜完成签到,获得积分10
7秒前
畅快寄容完成签到,获得积分20
8秒前
8秒前
aliupeifang发布了新的文献求助10
10秒前
竹筏过海应助研友_LMBa6n采纳,获得30
10秒前
一口饺子发布了新的文献求助10
10秒前
鲜艳的怜烟完成签到,获得积分10
10秒前
yy完成签到,获得积分10
11秒前
斯文败类应助淡定冰颜采纳,获得10
13秒前
愤怒的芝麻完成签到,获得积分10
14秒前
14秒前
铮铮完成签到,获得积分10
14秒前
15秒前
万能图书馆应助Gin采纳,获得10
16秒前
美好黑猫完成签到 ,获得积分10
17秒前
汉堡包应助ed采纳,获得10
17秒前
18秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291