材料科学
异质结
光电子学
响应度
纳米线
比探测率
光电探测器
光致发光
作者
Shisir Devkota,Hirandeep Kuchoor,Kendall Dawkins,Rabin Pokharel,Mehul Parakh,Jia Li,Shanthi Iyer
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2023-04-18
卷期号:34 (26): 265204-265204
被引量:2
标识
DOI:10.1088/1361-6528/acc2c6
摘要
In this work, we present a systematic design of growth experiments and subsequent characterization of self-catalyzed molecular beam epitaxially grown GaAsSb heterostructure axial p-i-n nanowires (NWs) on p-Si <111> for the ensemble photodetector (PD) application in the near-infrared region. Diverse growth methods have been explored to gain a better insight into mitigating several growth challenges by systematically studying their impact on the NW electrical and optical properties to realize a high-quality p-i-n heterostructure. The successful growth approaches are Te-dopant compensation to suppress the p-type nature of intrinsic GaAsSb segment, growth interruption for strain relaxation at the interface, decreased substrate temperature to enhance supersaturation and minimize the reservoir effect, higher bandgap compositions of the n-segment of the heterostructure relative to the intrinsic region for boosting the absorption, and the high-temperature ultra-high vacuumin situannealing to reduce the parasitic radial overgrowth. The efficacy of these methods is supported by enhanced photoluminescence (PL) emission, suppressed dark current in the heterostructure p-i-n NWs accompanied by increased rectification ratio, photosensitivity, and a reduced low-frequency noise level. The PD fabricated utilizing the optimized GaAsSb axial p-i-n NWs exhibited the longer wavelength cutoff at ∼1.1μm with a significantly higher responsivity of ∼120 A W-1(@-3 V bias) and a detectivity of 1.1 × 1013Jones operating at room temperature. Frequency and the bias independent capacitance in the pico-Farad (pF) range and substantially lower noise level at the reverse biased condition, show the prospects of p-i-n GaAsSb NWs PD for high-speed optoelectronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI