CNT ink as an electrode additive for an effective hybrid conductive network in silicon microparticle/graphite anodes

石墨 材料科学 阳极 电极 导电体 碳纳米管 导电油墨 纳米技术 墨水池 复合材料 化学 薄板电阻 物理化学 图层(电子)
作者
Youngseul Cho,Eunji Lee,Kyu Sang Lee,Seon Jae Hwang,Chae Won Kim,Taek-Gyoung Kim,Seong-Kyun Kang,Sang Yoon Park,Kwanghyun Yoo,Yuanzhe Piao
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:447: 142134-142134 被引量:13
标识
DOI:10.1016/j.electacta.2023.142134
摘要

Conductive additives are receiving much attention as they can play an important role in the challenging intrinsic properties of Si anode in lithium-ion batteries. Hence, these carbonaceous materials not only facilitate electrical percolating pathways but also secure structural integrity within the electrode. However, the intrinsic properties of conventional conductive materials such as point-to-point contact of carbon spheres and severe entanglement of CNT make it difficult to achieve an efficient conductive network in the electrode. Here, we use well-dispersed CNT ink as an additive for a homogeneous conductive network in silicon microparticle/graphite (SiMP/Gra) electrodes. By using the CNT ink with Super P particles, a unique hybrid conductive network, composed of 0D and 1D carbon materials, was formed in the SiMP/Gra electrode. To find an optimized conductive structure, a series of electrodes with different weight ratios between CNT and Super P was prepared and electrochemically tested. Through the investigation, the 1 wt% of CNT ink addition makes the best electrochemical performance. The superior performance of SiMP/Gra CNT ink 1.0 wt% electrode can be explained by the optimized hybrid conductive network with Super P cluster bridges between CNT strands. Furthermore, the optimal CNT-Super P hybrid network effectively grasps SiMP/Gra particles and connects electrode components, resulting in improved electrical conductivity and structural integrity upon repeated cycles. The described CNT ink additive concept and the hybrid conductive network could be useful suggestions in electrode design, considering conductive structure and electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beibeimao发布了新的文献求助10
刚刚
哆啦A梦完成签到,获得积分10
刚刚
向日葵发布了新的文献求助10
1秒前
2秒前
BetterH完成签到 ,获得积分10
3秒前
3秒前
科研通AI2S应助小卢同学采纳,获得10
3秒前
3秒前
PORL完成签到,获得积分10
4秒前
qiao完成签到,获得积分10
5秒前
深情安青应助stella采纳,获得10
5秒前
圆圆圆完成签到,获得积分10
6秒前
斯文败类应助高薪采纳,获得10
6秒前
6秒前
7秒前
laiyongqiang发布了新的文献求助10
8秒前
10秒前
大力的映梦完成签到,获得积分10
10秒前
CipherSage应助Fxxkme采纳,获得10
10秒前
11秒前
标致鞋垫完成签到,获得积分10
11秒前
scq完成签到 ,获得积分10
11秒前
Hello~完成签到,获得积分10
12秒前
Ann完成签到,获得积分10
14秒前
lijingwen发布了新的文献求助10
14秒前
神勇冰岚关注了科研通微信公众号
14秒前
太叔捕完成签到,获得积分10
15秒前
15秒前
张晓洁完成签到,获得积分10
15秒前
小二郎应助淼淼之锋采纳,获得10
16秒前
yefeng完成签到,获得积分10
16秒前
16秒前
上官若男应助Cc采纳,获得10
17秒前
fg完成签到 ,获得积分10
17秒前
17秒前
WHY完成签到,获得积分10
18秒前
禾叶完成签到 ,获得积分10
19秒前
felix完成签到,获得积分10
19秒前
萧水白发布了新的文献求助100
19秒前
20秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Colloidal Synthesis of Plasmonic Nanometals 500
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587