CNT ink as an electrode additive for an effective hybrid conductive network in silicon microparticle/graphite anodes

石墨 材料科学 阳极 电极 导电体 碳纳米管 导电油墨 纳米技术 墨水池 复合材料 化学 薄板电阻 物理化学 图层(电子)
作者
Youngseul Cho,Eunji Lee,Kyu Sang Lee,Seon Jae Hwang,Chae Won Kim,Taek-Gyoung Kim,Seong-Kyun Kang,Sang Yoon Park,Kwanghyun Yoo,Yuanzhe Piao
出处
期刊:Electrochimica Acta [Elsevier BV]
卷期号:447: 142134-142134 被引量:18
标识
DOI:10.1016/j.electacta.2023.142134
摘要

Conductive additives are receiving much attention as they can play an important role in the challenging intrinsic properties of Si anode in lithium-ion batteries. Hence, these carbonaceous materials not only facilitate electrical percolating pathways but also secure structural integrity within the electrode. However, the intrinsic properties of conventional conductive materials such as point-to-point contact of carbon spheres and severe entanglement of CNT make it difficult to achieve an efficient conductive network in the electrode. Here, we use well-dispersed CNT ink as an additive for a homogeneous conductive network in silicon microparticle/graphite (SiMP/Gra) electrodes. By using the CNT ink with Super P particles, a unique hybrid conductive network, composed of 0D and 1D carbon materials, was formed in the SiMP/Gra electrode. To find an optimized conductive structure, a series of electrodes with different weight ratios between CNT and Super P was prepared and electrochemically tested. Through the investigation, the 1 wt% of CNT ink addition makes the best electrochemical performance. The superior performance of SiMP/Gra CNT ink 1.0 wt% electrode can be explained by the optimized hybrid conductive network with Super P cluster bridges between CNT strands. Furthermore, the optimal CNT-Super P hybrid network effectively grasps SiMP/Gra particles and connects electrode components, resulting in improved electrical conductivity and structural integrity upon repeated cycles. The described CNT ink additive concept and the hybrid conductive network could be useful suggestions in electrode design, considering conductive structure and electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
1秒前
1秒前
无花果应助老实寒云采纳,获得10
2秒前
脑洞疼应助强强采纳,获得10
3秒前
双刀火鸡发布了新的文献求助10
3秒前
大个应助x1981采纳,获得10
5秒前
科研通AI5应助baekhyun采纳,获得10
6秒前
向晚发布了新的文献求助10
6秒前
隐形曼青应助tdtk采纳,获得10
8秒前
8秒前
9秒前
思源应助上岸采纳,获得10
11秒前
2:38am完成签到,获得积分10
11秒前
13秒前
14秒前
酷波er应助干果采纳,获得10
15秒前
sunshine完成签到 ,获得积分10
15秒前
pian完成签到,获得积分10
15秒前
dony发布了新的文献求助10
15秒前
慕青应助结实尔珍采纳,获得30
16秒前
ly发布了新的文献求助10
18秒前
20秒前
zyyy发布了新的文献求助10
21秒前
21秒前
华仔应助小猫采纳,获得10
22秒前
Hello应助阿轩采纳,获得10
22秒前
huhiji完成签到,获得积分10
25秒前
ding应助123123采纳,获得10
27秒前
余琳发布了新的文献求助10
27秒前
如意2023发布了新的文献求助10
27秒前
赘婿应助年轻冥茗采纳,获得10
30秒前
领导范儿应助dony采纳,获得10
31秒前
fullsun发布了新的文献求助10
31秒前
阿童木完成签到,获得积分10
32秒前
33秒前
34秒前
小朋友完成签到,获得积分10
34秒前
ddd发布了新的文献求助10
36秒前
36秒前
3080完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745787
求助须知:如何正确求助?哪些是违规求助? 3288729
关于积分的说明 10060328
捐赠科研通 3004942
什么是DOI,文献DOI怎么找? 1649984
邀请新用户注册赠送积分活动 785655
科研通“疑难数据库(出版商)”最低求助积分说明 751204