CNT ink as an electrode additive for an effective hybrid conductive network in silicon microparticle/graphite anodes

石墨 材料科学 阳极 电极 导电体 碳纳米管 导电油墨 纳米技术 墨水池 复合材料 化学 薄板电阻 物理化学 图层(电子)
作者
Youngseul Cho,Eunji Lee,Kyu Sang Lee,Seon Jae Hwang,Chae Won Kim,Taek-Gyoung Kim,Seong-Kyun Kang,Sang Yoon Park,Kwanghyun Yoo,Yuanzhe Piao
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:447: 142134-142134 被引量:15
标识
DOI:10.1016/j.electacta.2023.142134
摘要

Conductive additives are receiving much attention as they can play an important role in the challenging intrinsic properties of Si anode in lithium-ion batteries. Hence, these carbonaceous materials not only facilitate electrical percolating pathways but also secure structural integrity within the electrode. However, the intrinsic properties of conventional conductive materials such as point-to-point contact of carbon spheres and severe entanglement of CNT make it difficult to achieve an efficient conductive network in the electrode. Here, we use well-dispersed CNT ink as an additive for a homogeneous conductive network in silicon microparticle/graphite (SiMP/Gra) electrodes. By using the CNT ink with Super P particles, a unique hybrid conductive network, composed of 0D and 1D carbon materials, was formed in the SiMP/Gra electrode. To find an optimized conductive structure, a series of electrodes with different weight ratios between CNT and Super P was prepared and electrochemically tested. Through the investigation, the 1 wt% of CNT ink addition makes the best electrochemical performance. The superior performance of SiMP/Gra CNT ink 1.0 wt% electrode can be explained by the optimized hybrid conductive network with Super P cluster bridges between CNT strands. Furthermore, the optimal CNT-Super P hybrid network effectively grasps SiMP/Gra particles and connects electrode components, resulting in improved electrical conductivity and structural integrity upon repeated cycles. The described CNT ink additive concept and the hybrid conductive network could be useful suggestions in electrode design, considering conductive structure and electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫好好完成签到,获得积分10
1秒前
2秒前
hhzz完成签到,获得积分10
2秒前
2秒前
xhemers完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
3秒前
爱静静应助怡然的莫茗采纳,获得10
4秒前
5秒前
科研通AI5应助清秀的以云采纳,获得30
5秒前
李健的粉丝团团长应助xx采纳,获得10
7秒前
大豪子发布了新的文献求助30
7秒前
李繁蕊发布了新的文献求助10
7秒前
11秒前
11秒前
11秒前
11秒前
橘柚完成签到 ,获得积分10
12秒前
zmmmm发布了新的文献求助10
12秒前
领导范儿应助温言采纳,获得10
12秒前
思源应助OvO采纳,获得10
14秒前
迷糊发布了新的文献求助30
15秒前
LY发布了新的文献求助10
16秒前
zzz完成签到,获得积分10
16秒前
KimJongUn完成签到,获得积分10
16秒前
18秒前
18秒前
zy完成签到,获得积分10
19秒前
开心果子发布了新的文献求助10
19秒前
云痴子完成签到,获得积分10
20秒前
SciGPT应助粥粥采纳,获得10
20秒前
20秒前
20秒前
21秒前
苏源完成签到,获得积分10
21秒前
wu关闭了wu文献求助
21秒前
21秒前
22秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808