Towards Diagnostic Intelligent Systems in Leukemia Detection and Classification: A Systematic Review and Meta‐analysis

荟萃分析 计算机科学 白血病 人工智能 医学 内科学
作者
Mehrad Aria,Zohreh Javanmard,Donia Pishdad,Vahid Jannesari,Maryam Keshvari,Mahshid Arastonejad,Reza Safdari,Mohammad Esmaeil Akbari
出处
期刊:Journal of Evidence-based Medicine [Wiley]
卷期号:18 (1)
标识
DOI:10.1111/jebm.70005
摘要

ABSTRACT Objective Leukemia is a type of blood cancer that begins in the bone marrow and results in high numbers of abnormal white blood cells. Automated detection and classification of leukemia and its subtypes using artificial intelligence (AI) and machine learning (ML) algorithms plays a significant role in the early diagnosis and treatment of this fatal disease. This study aimed to review and synthesize research findings on AI‐based approaches in leukemia detection and classification from peripheral blood smear images. Methods A systematic literature search was conducted across four e‐databases (Web of Science, PubMed, Scopus, and IEEE Xplore) from January 2015 to March 2023 by searching the keywords “Leukemia,” “Machine Learning,” and “Blood Smear Image,” as well as their synonyms. All original journal articles and conference papers that used ML algorithms in detecting and classifying leukemia were included. The study quality was assessed using the Qiao Quality Assessment tool. Results From 1325 articles identified through a systematic search, 190 studies were eligible for this review. The mean validation accuracy (ACC) of the ML methods applied in the reviewed studies was 95.38%. Among different ML methods, modern techniques were mostly considered to detect and classify leukemia (60.53% of studies). Supervised learning was the dominant ML paradigm (79% of studies). Studies utilized common ML methodologies for leukemia detection and classification, including preprocessing, feature extraction, feature selection, and classification. Deep learning (DL) techniques, especially convolutional neural networks, were the most widely used modern algorithms in the mentioned methodologies. Most studies relied on internal validation (87%). Moreover, K‐fold cross‐validation and train/test split were the commonly employed validation strategies. Conclusion AI‐based algorithms are widely used in detecting and classifying leukemia with remarkable performance. Future studies should prioritize rigorous external validation to evaluate generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yyyyqqq完成签到,获得积分20
3秒前
小二郎应助凉茶采纳,获得10
3秒前
4秒前
CipherSage应助YoungLee采纳,获得10
4秒前
howl发布了新的文献求助10
10秒前
小悦完成签到,获得积分10
11秒前
今后应助调皮正豪采纳,获得10
11秒前
12秒前
14秒前
16秒前
瓜农完成签到,获得积分10
17秒前
ixueyi发布了新的文献求助10
18秒前
舒服的银耳汤完成签到,获得积分10
18秒前
传奇3应助研友_8QyXr8采纳,获得10
18秒前
思源应助howl采纳,获得10
18秒前
凉茶发布了新的文献求助10
19秒前
852应助咻咻采纳,获得10
19秒前
坚定服饰完成签到 ,获得积分10
20秒前
20秒前
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
21秒前
24秒前
25秒前
七七七发布了新的文献求助10
25秒前
25秒前
28秒前
xiaoyu发布了新的文献求助15
29秒前
Drmu发布了新的文献求助10
29秒前
30秒前
sh完成签到,获得积分10
30秒前
30秒前
30秒前
科研通AI6.2应助Able阿拉基采纳,获得10
31秒前
32秒前
33秒前
你在发布了新的文献求助10
34秒前
zhuww完成签到,获得积分10
34秒前
谦让怀蕊完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872925
求助须知:如何正确求助?哪些是违规求助? 6493788
关于积分的说明 15670196
捐赠科研通 4990329
什么是DOI,文献DOI怎么找? 2690207
邀请新用户注册赠送积分活动 1632742
关于科研通互助平台的介绍 1590623