已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards Diagnostic Intelligent Systems in Leukemia Detection and Classification: A Systematic Review and Meta‐analysis

荟萃分析 计算机科学 白血病 人工智能 医学 内科学
作者
Mehrad Aria,Zohreh Javanmard,Donia Pishdad,Vahid Jannesari,Maryam Keshvari,Mahshid Arastonejad,Reza Safdari,Mohammad Esmaeil Akbari
出处
期刊:Journal of Evidence-based Medicine [Wiley]
卷期号:18 (1)
标识
DOI:10.1111/jebm.70005
摘要

ABSTRACT Objective Leukemia is a type of blood cancer that begins in the bone marrow and results in high numbers of abnormal white blood cells. Automated detection and classification of leukemia and its subtypes using artificial intelligence (AI) and machine learning (ML) algorithms plays a significant role in the early diagnosis and treatment of this fatal disease. This study aimed to review and synthesize research findings on AI‐based approaches in leukemia detection and classification from peripheral blood smear images. Methods A systematic literature search was conducted across four e‐databases (Web of Science, PubMed, Scopus, and IEEE Xplore) from January 2015 to March 2023 by searching the keywords “Leukemia,” “Machine Learning,” and “Blood Smear Image,” as well as their synonyms. All original journal articles and conference papers that used ML algorithms in detecting and classifying leukemia were included. The study quality was assessed using the Qiao Quality Assessment tool. Results From 1325 articles identified through a systematic search, 190 studies were eligible for this review. The mean validation accuracy (ACC) of the ML methods applied in the reviewed studies was 95.38%. Among different ML methods, modern techniques were mostly considered to detect and classify leukemia (60.53% of studies). Supervised learning was the dominant ML paradigm (79% of studies). Studies utilized common ML methodologies for leukemia detection and classification, including preprocessing, feature extraction, feature selection, and classification. Deep learning (DL) techniques, especially convolutional neural networks, were the most widely used modern algorithms in the mentioned methodologies. Most studies relied on internal validation (87%). Moreover, K‐fold cross‐validation and train/test split were the commonly employed validation strategies. Conclusion AI‐based algorithms are widely used in detecting and classifying leukemia with remarkable performance. Future studies should prioritize rigorous external validation to evaluate generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疑问师发布了新的文献求助10
刚刚
勇往直前发布了新的文献求助10
3秒前
6秒前
丘比特应助kay采纳,获得10
7秒前
hht12211完成签到,获得积分10
9秒前
10秒前
LLYA发布了新的文献求助10
11秒前
12秒前
靓丽谷南完成签到,获得积分10
13秒前
14秒前
14秒前
夏紊完成签到 ,获得积分10
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
20秒前
机智紫菜发布了新的文献求助30
21秒前
22秒前
爆米花应助casino采纳,获得10
22秒前
科研通AI5应助kangkang采纳,获得10
22秒前
贪玩初彤发布了新的文献求助30
23秒前
24秒前
动漫大师发布了新的文献求助10
24秒前
linxue完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
烟花应助amier采纳,获得10
27秒前
希望天下0贩的0应助DK218采纳,获得20
28秒前
周玥发布了新的文献求助10
29秒前
英姑应助研友_nE1dDn采纳,获得20
30秒前
31秒前
32秒前
32秒前
33秒前
mmmmm发布了新的文献求助30
35秒前
斯文败类应助整齐棉花糖采纳,获得10
36秒前
36秒前
溪夕er完成签到,获得积分10
37秒前
小付发布了新的文献求助10
37秒前
火以敬发布了新的文献求助10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666170
求助须知:如何正确求助?哪些是违规求助? 3225205
关于积分的说明 9761933
捐赠科研通 2935194
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759203
科研通“疑难数据库(出版商)”最低求助积分说明 735153