氧化还原
溶解
锰
电子转移
电解质
材料科学
化学工程
法拉第效率
电极
降级(电信)
纳米技术
无机化学
化学
物理化学
计算机科学
工程类
冶金
电信
作者
Xinzhe Xue,Zhen Liu,Swetha Chandrasekaran,Samuel Eisenberg,C. Althaus,Megan C. Freyman,Anica Pinongcos,Qiu Ren,Logan Valdovinos,C Hsieh,Bintao Hu,Bruce Dunn,Christine A. Orme,Xiao Wang,Marcus A. Worsley,Yat Li
标识
DOI:10.1002/adma.202419505
摘要
Abstract Manganese dioxide (MnO 2 ) deposition/dissolution (Mn 2+ /MnO 2 ) chemistry, involving a two‐electron‐transfer process, holds promise for safe and eco‐friendly large‐scale energy storage. However, challenges like electrode/electrolyte interface environment fluctuations (H + and H 2 O activity), irreversible Mn degradation, and limited understanding of degradation mechanisms hinder the reversibility of the Mn 2+ /MnO 2 conversion. This study demonstrates a vanadyl/pervanadyl (VO 2+ /VO 2 + ) redox‐mediated interface designed for high‐energy Mn 2+ /MnO 2 batteries. Unlike flow systems, this work uncovers, for the first time, the mechanism of a static redox‐mediated interface in regulating interfacial H + and H 2 O activities. Significantly, the VO 2+ /VO 2 + chemical redox mediation targets Mn 3+ intermediates, suppressing their hydrolysis and enabling 100% Mn 2+ /MnO 2 conversion. The redox‐mediated interface enhances the Mn redox electron transfer process, achieving a stable ≈95% coulombic efficiency and ultrahigh capacity of 100 mAh cm − 2 with an areal energy density of 111 mWh cm − 2 , outperforming flow systems. The electrode also exhibits an average specific capacity of 593 mAh g −1 , approaching the theoretical limit of 616 mAh g −1 , and a specific energy density of 721 Wh kg −1 at high MnO 2 loadings (50–150 mg cm −2 ). The findings highlight the critical role of interfacial redox mediation in regulating H + and H 2 O activities and underscore the significance of interface dynamics.
科研通智能强力驱动
Strongly Powered by AbleSci AI