离群值
估计员
高斯分布
贝叶斯概率
计算机科学
多元统计
算法
高斯过程
人工智能
稳健统计
均方误差
模式识别(心理学)
数学
统计
机器学习
物理
量子力学
作者
Christoph F. Mecklenbräuker,Peter Gerstoft,Esa Ollila,Yongsung Park
标识
DOI:10.23919/eusipco58844.2023.10289816
摘要
We formulate statistically robust Sparse Bayesian Learning (SBL) for Direction of Arrival (DOA) estimation from Complex Elliptically Symmetric (CES) data using a general approach based on loss functions. Simulation results for DOA estimation are obtained for several choices of loss functions: Gauss, multivariate $t$ (MVT), Huber, and Tyler. The root mean square DOA error is discussed for Gaussian, MVT, and $\epsilon$ -contaminated data. The robust SBL estimators perform well in the presence of outliers and for heavy-tailed data and almost like classical SBL for Gaussian data.
科研通智能强力驱动
Strongly Powered by AbleSci AI