免疫学
免疫系统
体内
脾脏
微生物群
生物
离体
下调和上调
T细胞
细胞因子
细胞生物学
生物化学
生物信息学
生物技术
基因
作者
Chi Ma,Justin D. McCallen,John C. McVey,Rajiv Trehan,Kylynda C. Bauer,Qianfei Zhang,Benjamin Ruf,Sophie Wang,Chih-Ming Lai,Giorgio Trinchieri,Jay A. Berzofsky,Firouzeh Korangy,Tim F. Greten
标识
DOI:10.4049/jimmunol.2200854
摘要
The gut microbiome is an important modulator of the host immune system. In this study, we found that altering the gut microbiome by oral vancomycin increases liver invariant NKT (iNKT) cell function. Enhanced iNKT cytokine production and activation marker expression were observed in vancomycin-treated mice following both Ag-specific and Ag-independent in vivo iNKT stimulations, with a more prominent effect in the liver than in the spleen. Fecal transplantation studies demonstrated that the iNKT functional regulation is mediated by altering the gut microbiome but uncoupled from the modulation of iNKT cell population size. Interestingly, when stimulated in vitro, iNKT cells from vancomycin-treated mice did not show increased activation, suggesting an indirect regulation. iNKT cells expressed high levels of IL-18 receptor, and vancomycin increased the expression of IL-18 in the liver. Blocking IL-18 by neutralizing Ab or using genetically deficient mice attenuated the enhanced iNKT activation. Liver macrophages were identified as a major source of IL-18. General macrophage depletion by clodronate abolished this iNKT activation. Using anti-CSF-1R depletion or LyzCrexCSF-1RLsL-DTR mice identified CSF-1R+ macrophages as a critical modulator of iNKT function. Vancomycin treatment had no effect on iNKT cell function in vivo in IL-18 knockout macrophage reconstituted mice. Together, our results demonstrate that the gut microbiome controls liver iNKT function via regulating CSF-1R+ macrophages to produce IL-18.
科研通智能强力驱动
Strongly Powered by AbleSci AI