Understanding the efficiency and evolution of China's Green Economy: A province-level analysis

中国 城市化 面板数据 分布(数学) 可持续发展 经济 地理 广义估计方程 计量经济学 数学 经济增长 统计 生态学 考古 数学分析 生物
作者
Yanyong Hu,Xuchao Zhang,Jiaxi Wu,Zheng Meng
出处
期刊:Energy & Environment [SAGE Publishing]
标识
DOI:10.1177/0958305x231204027
摘要

The efficiency level, evolution characteristics, and factors driving the green economy in all provinces and regions should be clarified to achieve high-quality economic development and meet China's “double carbon” target. This study conducted the Super-Effective Slack-Based Model considering unexpected outputs to evaluate province-level Green Economic Efficiency (GEE) analysis (including 30 provinces, autonomous regions, and municipalities directly under the Central Government) in China from 2005 to 2020. Moreover, the distribution and dynamic evolution trend of GEE development was estimated through Kernel density estimation. Besides, GEE and its factors (i.e., industrial structure rationalization [ISR], industrial structure advancement [ISA], and urbanization level [UL]) were examined using a Panel vector autoregressive model that was built in this study. As indicated by the result of this study, China's GEE level generally displayed a “U-shaped” development trend of declining, stabilizing, and then rising, whereas the overall efficiency level is low, where the national GEE average reached 0.6934. The regional GEE level exhibited a significant “ladder” distribution, with the highest level, the second level, and the lowest level in the east, the middle, and the west, respectively. The GEE level varied significantly with the province, and most of the levels were at a medium efficiency level. Notably, 60% of regions had medium efficiency in 2020. The levels of ISR, ISA, and UL play significant roles in boosting green economic growth. This study provides valuable insights into the drivers of green economic growth in China guiding policy decisions on achieving a sustainable and low-carbon economy. As China strives to fulfill its ambitious carbon reduction goals, the findings of this study highlight the significance of continuing to prioritize green economic development at the provincial level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
威武雪兰完成签到,获得积分10
1秒前
1秒前
一坨完成签到 ,获得积分10
1秒前
科研通AI5应助net80yhm采纳,获得10
2秒前
lh发布了新的文献求助10
3秒前
Einson完成签到 ,获得积分10
4秒前
lx发布了新的文献求助10
4秒前
001完成签到,获得积分10
5秒前
开着飞机骑拖拉机完成签到,获得积分10
5秒前
寇婧怡完成签到 ,获得积分10
6秒前
阿湫发布了新的文献求助10
6秒前
Qsss发布了新的文献求助10
6秒前
6秒前
7秒前
JamesPei应助111采纳,获得10
7秒前
执笔完成签到,获得积分10
7秒前
手可摘星辰完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
李健应助大帅采纳,获得10
9秒前
10秒前
冷艳的火龙果完成签到,获得积分10
10秒前
不知完成签到 ,获得积分10
10秒前
Zard发布了新的文献求助10
12秒前
清仔发布了新的文献求助10
12秒前
13秒前
大地上的鱼完成签到,获得积分10
13秒前
13秒前
上官若男应助平常的路人采纳,获得10
13秒前
小花发布了新的文献求助10
14秒前
庸俗完成签到,获得积分10
15秒前
16秒前
论文顺利发布了新的文献求助10
16秒前
16秒前
砚行书完成签到,获得积分10
16秒前
CodeCraft应助Qsss采纳,获得10
16秒前
情怀应助葫芦娃采纳,获得10
17秒前
小慈爱鸡完成签到 ,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048