Understanding the efficiency and evolution of China's Green Economy: A province-level analysis

中国 城市化 面板数据 分布(数学) 可持续发展 经济 地理 广义估计方程 计量经济学 数学 经济增长 统计 生态学 考古 数学分析 生物
作者
Yanyong Hu,Xuchao Zhang,Jiaxi Wu,Zheng Meng
出处
期刊:Energy & Environment [SAGE Publishing]
标识
DOI:10.1177/0958305x231204027
摘要

The efficiency level, evolution characteristics, and factors driving the green economy in all provinces and regions should be clarified to achieve high-quality economic development and meet China's “double carbon” target. This study conducted the Super-Effective Slack-Based Model considering unexpected outputs to evaluate province-level Green Economic Efficiency (GEE) analysis (including 30 provinces, autonomous regions, and municipalities directly under the Central Government) in China from 2005 to 2020. Moreover, the distribution and dynamic evolution trend of GEE development was estimated through Kernel density estimation. Besides, GEE and its factors (i.e., industrial structure rationalization [ISR], industrial structure advancement [ISA], and urbanization level [UL]) were examined using a Panel vector autoregressive model that was built in this study. As indicated by the result of this study, China's GEE level generally displayed a “U-shaped” development trend of declining, stabilizing, and then rising, whereas the overall efficiency level is low, where the national GEE average reached 0.6934. The regional GEE level exhibited a significant “ladder” distribution, with the highest level, the second level, and the lowest level in the east, the middle, and the west, respectively. The GEE level varied significantly with the province, and most of the levels were at a medium efficiency level. Notably, 60% of regions had medium efficiency in 2020. The levels of ISR, ISA, and UL play significant roles in boosting green economic growth. This study provides valuable insights into the drivers of green economic growth in China guiding policy decisions on achieving a sustainable and low-carbon economy. As China strives to fulfill its ambitious carbon reduction goals, the findings of this study highlight the significance of continuing to prioritize green economic development at the provincial level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张雯思发布了新的文献求助10
刚刚
西瓜刀发布了新的文献求助10
刚刚
寒冷的发箍完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
wu完成签到,获得积分10
3秒前
orixero应助张大英采纳,获得10
3秒前
5秒前
heli发布了新的文献求助10
5秒前
6秒前
猪猪hero发布了新的文献求助10
6秒前
打打应助哈哈鹿采纳,获得10
7秒前
skye完成签到,获得积分10
7秒前
CipherSage应助义气如萱采纳,获得10
7秒前
zty发布了新的文献求助30
7秒前
SS发布了新的文献求助10
7秒前
戴岱发布了新的文献求助10
9秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
张大英发布了新的文献求助10
16秒前
马er完成签到,获得积分20
16秒前
奮斗完成签到,获得积分10
16秒前
戴岱完成签到,获得积分10
17秒前
哈哈鹿发布了新的文献求助10
18秒前
18秒前
黎明森完成签到,获得积分10
18秒前
Monica应助朴素若枫采纳,获得30
19秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得30
20秒前
20秒前
czh应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
今后应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136