亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding the efficiency and evolution of China's Green Economy: A province-level analysis

中国 城市化 面板数据 分布(数学) 可持续发展 经济 地理 广义估计方程 计量经济学 数学 经济增长 统计 生态学 考古 数学分析 生物
作者
Yanyong Hu,Xuchao Zhang,Jiaxi Wu,Zheng Meng
出处
期刊:Energy & Environment [SAGE]
标识
DOI:10.1177/0958305x231204027
摘要

The efficiency level, evolution characteristics, and factors driving the green economy in all provinces and regions should be clarified to achieve high-quality economic development and meet China's “double carbon” target. This study conducted the Super-Effective Slack-Based Model considering unexpected outputs to evaluate province-level Green Economic Efficiency (GEE) analysis (including 30 provinces, autonomous regions, and municipalities directly under the Central Government) in China from 2005 to 2020. Moreover, the distribution and dynamic evolution trend of GEE development was estimated through Kernel density estimation. Besides, GEE and its factors (i.e., industrial structure rationalization [ISR], industrial structure advancement [ISA], and urbanization level [UL]) were examined using a Panel vector autoregressive model that was built in this study. As indicated by the result of this study, China's GEE level generally displayed a “U-shaped” development trend of declining, stabilizing, and then rising, whereas the overall efficiency level is low, where the national GEE average reached 0.6934. The regional GEE level exhibited a significant “ladder” distribution, with the highest level, the second level, and the lowest level in the east, the middle, and the west, respectively. The GEE level varied significantly with the province, and most of the levels were at a medium efficiency level. Notably, 60% of regions had medium efficiency in 2020. The levels of ISR, ISA, and UL play significant roles in boosting green economic growth. This study provides valuable insights into the drivers of green economic growth in China guiding policy decisions on achieving a sustainable and low-carbon economy. As China strives to fulfill its ambitious carbon reduction goals, the findings of this study highlight the significance of continuing to prioritize green economic development at the provincial level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
8秒前
华仔应助机灵自中采纳,获得10
32秒前
背后访风完成签到 ,获得积分10
1分钟前
LUMO完成签到 ,获得积分10
1分钟前
Tei完成签到,获得积分10
2分钟前
2分钟前
英俊的铭应助阿a采纳,获得10
2分钟前
3分钟前
阿a发布了新的文献求助10
3分钟前
moom完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
赘婿应助科研通管家采纳,获得30
4分钟前
马梦秋发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
充电宝应助欢呼的寻双采纳,获得10
4分钟前
CodeCraft应助泓凯骏采纳,获得10
5分钟前
5分钟前
泓凯骏发布了新的文献求助10
5分钟前
淡定落雁发布了新的文献求助30
5分钟前
淡定落雁完成签到,获得积分10
5分钟前
ninomae完成签到 ,获得积分10
5分钟前
6分钟前
哲别发布了新的文献求助10
6分钟前
7分钟前
7分钟前
哲别发布了新的文献求助10
7分钟前
小二郎应助哲别采纳,获得10
7分钟前
Wish完成签到,获得积分10
7分钟前
菜菜完成签到,获得积分10
8分钟前
9分钟前
菜菜发布了新的文献求助10
9分钟前
Jayden完成签到 ,获得积分10
10分钟前
12分钟前
思源应助科研通管家采纳,获得10
12分钟前
iamzhangly30hyit完成签到 ,获得积分10
12分钟前
lalala大鸭梨完成签到,获得积分10
12分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784146
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997