Understanding the efficiency and evolution of China's Green Economy: A province-level analysis

中国 城市化 面板数据 分布(数学) 可持续发展 经济 地理 广义估计方程 计量经济学 数学 经济增长 统计 生态学 考古 数学分析 生物
作者
Yanyong Hu,Xuchao Zhang,Jiaxi Wu,Zheng Meng
出处
期刊:Energy & Environment [SAGE]
标识
DOI:10.1177/0958305x231204027
摘要

The efficiency level, evolution characteristics, and factors driving the green economy in all provinces and regions should be clarified to achieve high-quality economic development and meet China's “double carbon” target. This study conducted the Super-Effective Slack-Based Model considering unexpected outputs to evaluate province-level Green Economic Efficiency (GEE) analysis (including 30 provinces, autonomous regions, and municipalities directly under the Central Government) in China from 2005 to 2020. Moreover, the distribution and dynamic evolution trend of GEE development was estimated through Kernel density estimation. Besides, GEE and its factors (i.e., industrial structure rationalization [ISR], industrial structure advancement [ISA], and urbanization level [UL]) were examined using a Panel vector autoregressive model that was built in this study. As indicated by the result of this study, China's GEE level generally displayed a “U-shaped” development trend of declining, stabilizing, and then rising, whereas the overall efficiency level is low, where the national GEE average reached 0.6934. The regional GEE level exhibited a significant “ladder” distribution, with the highest level, the second level, and the lowest level in the east, the middle, and the west, respectively. The GEE level varied significantly with the province, and most of the levels were at a medium efficiency level. Notably, 60% of regions had medium efficiency in 2020. The levels of ISR, ISA, and UL play significant roles in boosting green economic growth. This study provides valuable insights into the drivers of green economic growth in China guiding policy decisions on achieving a sustainable and low-carbon economy. As China strives to fulfill its ambitious carbon reduction goals, the findings of this study highlight the significance of continuing to prioritize green economic development at the provincial level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助l11x29采纳,获得10
1秒前
1秒前
老詹头发布了新的文献求助10
1秒前
思源应助叫滚滚采纳,获得10
2秒前
3秒前
刘歌完成签到 ,获得积分10
3秒前
阿巡完成签到,获得积分10
3秒前
Chen完成签到,获得积分10
5秒前
LSH970829发布了新的文献求助10
5秒前
哈哈哈完成签到 ,获得积分10
6秒前
汤姆完成签到,获得积分10
6秒前
8秒前
8秒前
翠翠完成签到,获得积分10
9秒前
9秒前
LSH970829完成签到,获得积分10
10秒前
Lyg完成签到,获得积分20
11秒前
坚强的樱发布了新的文献求助10
11秒前
baodingning完成签到,获得积分10
12秒前
12秒前
公茂源发布了新的文献求助30
12秒前
热爱完成签到,获得积分10
13秒前
14秒前
叫滚滚发布了新的文献求助10
15秒前
星瑆心完成签到,获得积分10
15秒前
啦啦啦啦啦完成签到,获得积分10
16秒前
Lyg发布了新的文献求助10
16秒前
Dksido完成签到,获得积分10
17秒前
兰博基尼奥完成签到,获得积分10
17秒前
热情芷荷发布了新的文献求助10
19秒前
random完成签到,获得积分10
20秒前
20秒前
果果瑞宁完成签到,获得积分10
20秒前
21秒前
机智小虾米完成签到,获得积分20
21秒前
goldenfleece完成签到,获得积分10
22秒前
科研通AI2S应助学者采纳,获得10
22秒前
小杨完成签到,获得积分10
23秒前
sutharsons应助科研通管家采纳,获得30
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808