Spatiotemporal miRNA and transcriptomic network dynamically regulate the developmental and senescence processes of poplar leaves

生物 转录组 光合能力 衰老 光合作用 植物 基因 句号(音乐) 细胞生物学 基因表达 遗传学 声学 物理
作者
Kang Du,Sufei Jiang,Hao Chen,Yufei Xia,Ruixiang Guo,Aoyu Ling,Ting Liao,Wenqi Wu,Xiangyang Kang
出处
期刊:Horticulture research [Springer Nature]
卷期号:10 (10) 被引量:2
标识
DOI:10.1093/hr/uhad186
摘要

Abstract Poplar is an important afforestation and urban greening species. Poplar leaf development occurs in stages, from young to mature and then from mature to senescent; these are accompanied by various phenotypic and physiological changes. However, the associated transcriptional regulatory network is relatively unexplored. We first used principal component analysis to classify poplar leaves at different leaf positions into two stages: developmental maturity (the stage of maximum photosynthetic capacity); and the stage when photosynthetic capacity started to decline and gradually changed to senescence. The two stages were then further subdivided into five intervals by gene expression clustering analysis: young leaves, the period of cell genesis and functional differentiation (L1); young leaves, the period of development and initial formation of photosynthetic capacity (L3–L7); the period of maximum photosynthetic capacity of functional leaves (L9–L13); the period of decreasing photosynthetic capacity of functional leaves (L15–L27); and the period of senescent leaves (L29). Using a weighted co-expression gene network analysis of regulatory genes, high-resolution spatiotemporal transcriptional regulatory networks were constructed to reveal the core regulators that regulate leaf development. Spatiotemporal transcriptome data of poplar leaves revealed dynamic changes in genes and miRNAs during leaf development and identified several core regulators of leaf development, such as GRF5 and MYB5. This in-depth analysis of transcriptional regulation during leaf development provides a theoretical basis for exploring the biological basis of the transcriptional regulation of leaf development and the molecular design of breeding for delaying leaf senescence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是笨蛋完成签到 ,获得积分10
1秒前
酷波er应助caoyy采纳,获得10
2秒前
2秒前
Dreamsli发布了新的文献求助10
3秒前
有只小狗完成签到,获得积分10
4秒前
飞飞完成签到,获得积分10
5秒前
豆dou发布了新的文献求助10
5秒前
Mannone完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
13679165979完成签到,获得积分10
6秒前
Jocelyn7关注了科研通微信公众号
7秒前
Jzhang应助赵小可可可可采纳,获得10
7秒前
wls完成签到 ,获得积分10
8秒前
CC完成签到,获得积分10
8秒前
9秒前
鬼才之眼完成签到 ,获得积分10
9秒前
xfxx发布了新的文献求助10
10秒前
章家炜完成签到,获得积分20
10秒前
10秒前
茶博士发布了新的文献求助10
10秒前
专通下水道完成签到 ,获得积分10
15秒前
15秒前
15秒前
nenoaowu发布了新的文献求助30
15秒前
小马甲应助章家炜采纳,获得10
17秒前
赵李艺完成签到 ,获得积分10
17秒前
完美世界应助高大黄蜂采纳,获得10
18秒前
19秒前
19秒前
19秒前
zhangzhen发布了新的文献求助10
20秒前
马桶盖盖子完成签到 ,获得积分10
20秒前
21秒前
学术小白完成签到,获得积分10
21秒前
21秒前
郭豪琪发布了新的文献求助10
22秒前
认真丹亦完成签到 ,获得积分10
23秒前
周冬华完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824