Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS

甲状腺结节 微钙化 卷积神经网络 计算机科学 放射科 甲状腺 医学 Sørensen–骰子系数 分割 人工智能 细针穿刺 超声波 图像分割 活检 乳腺摄影术 内科学 癌症 乳腺癌
作者
Jingqi Zhang,Qingsong Wang,Jingwen Zhao,Hui Yu,Fei Wang,Jie Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (20): 205021-205021 被引量:1
标识
DOI:10.1088/1361-6560/acfdf0
摘要

Objective. There has been a considerable amount of computer-aided diagnosis (CAD) methods highlighted in the field of ultrasonic examination (USE) of thyroid nodules. However, few researches focused on the automatic risk classification, which was the basis for determining whether fine needle aspiration (FNA) was needed. The aim of this work was to implement automatic risk level assessment of thyroid nodules.Approach. Firstly, 1862 cases of thyroid nodules with the results of USE and FNA were collected as the dataset. Then, an improved U-Net++ model was utilized for segmenting thyroid nodules in ultrasound images automatically. Finally, the segmentation result was imported into a multi-task convolutional neural network (MT-CNN), the design of which was based on the clinical guideline called KWAK TI-RADS. Apart from the category of benign and malignant, the MT-CNN also exported the classification result of four malignant features, solid component (SC), hypoechogenicity or marked hypoechogenicity (HMH), microlobulated or irregular margin (MIM), microcalcification (MC), which were used for counting the risk level in KWAK TI-RADS.Main results. The performance of the improved U-Net++ was evaluated on our test set, including 302 cases. The Dice coefficient and intersection over union reached 0.899, 0.816, respectively. The classification accuracy rates of SC, HMH, MIM, MC, were 94.5%, 92.8%, 86.1%, 88.9%, while the false positive (FP) rate was 6.0%, 5.6%, 10.6%, 12.9% respectively. As for the category of benign and malignant, the precision and recall rates were 93.7% and 94.4%.Significance. The proposed CAD method showed favourable performance in the diagnosis of thyroid nodules. Compared with other methods, it could provide reports closer to clinical practice for doctors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MOMOTG发布了新的文献求助10
刚刚
刚刚
深情安青应助王慧颖采纳,获得10
刚刚
刚刚
qwe完成签到,获得积分10
刚刚
小番茄yuyu发布了新的文献求助10
刚刚
wonder发布了新的文献求助10
1秒前
1秒前
Charon发布了新的文献求助10
1秒前
1秒前
zhanghan发布了新的文献求助10
1秒前
小黎发布了新的文献求助10
1秒前
1秒前
2秒前
77发布了新的文献求助10
2秒前
赘婿应助爱搬玉米采纳,获得10
2秒前
带头大哥应助拼搏的黑夜采纳,获得10
3秒前
4秒前
Megan完成签到,获得积分10
4秒前
内向灵凡发布了新的文献求助10
4秒前
搜集达人应助Rlice采纳,获得10
4秒前
5秒前
6秒前
研友_n0GBAL发布了新的文献求助10
6秒前
dakjdia应助JMchiefEditor采纳,获得10
6秒前
爆米花应助Charon采纳,获得10
7秒前
zzy发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
刘茂云完成签到,获得积分10
8秒前
8秒前
tonyfountain发布了新的文献求助10
8秒前
Lucas应助kk采纳,获得10
8秒前
8秒前
糊涂的疾完成签到 ,获得积分10
8秒前
圆圆圆发布了新的文献求助10
10秒前
庚午发布了新的文献求助10
10秒前
Rlice完成签到,获得积分10
10秒前
ly完成签到,获得积分10
10秒前
陶醉完成签到,获得积分10
10秒前
傲娇黄豆发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609