亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS

甲状腺结节 微钙化 卷积神经网络 计算机科学 放射科 甲状腺 医学 Sørensen–骰子系数 分割 人工智能 细针穿刺 超声波 图像分割 活检 乳腺摄影术 内科学 癌症 乳腺癌
作者
Jingqi Zhang,Qingsong Wang,Jingwen Zhao,Hui Yu,Fei Wang,Jie Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (20): 205021-205021
标识
DOI:10.1088/1361-6560/acfdf0
摘要

Objective. There has been a considerable amount of computer-aided diagnosis (CAD) methods highlighted in the field of ultrasonic examination (USE) of thyroid nodules. However, few researches focused on the automatic risk classification, which was the basis for determining whether fine needle aspiration (FNA) was needed. The aim of this work was to implement automatic risk level assessment of thyroid nodules.Approach. Firstly, 1862 cases of thyroid nodules with the results of USE and FNA were collected as the dataset. Then, an improved U-Net++ model was utilized for segmenting thyroid nodules in ultrasound images automatically. Finally, the segmentation result was imported into a multi-task convolutional neural network (MT-CNN), the design of which was based on the clinical guideline called KWAK TI-RADS. Apart from the category of benign and malignant, the MT-CNN also exported the classification result of four malignant features, solid component (SC), hypoechogenicity or marked hypoechogenicity (HMH), microlobulated or irregular margin (MIM), microcalcification (MC), which were used for counting the risk level in KWAK TI-RADS.Main results. The performance of the improved U-Net++ was evaluated on our test set, including 302 cases. The Dice coefficient and intersection over union reached 0.899, 0.816, respectively. The classification accuracy rates of SC, HMH, MIM, MC, were 94.5%, 92.8%, 86.1%, 88.9%, while the false positive (FP) rate was 6.0%, 5.6%, 10.6%, 12.9% respectively. As for the category of benign and malignant, the precision and recall rates were 93.7% and 94.4%.Significance. The proposed CAD method showed favourable performance in the diagnosis of thyroid nodules. Compared with other methods, it could provide reports closer to clinical practice for doctors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
彭于晏应助科研通管家采纳,获得30
1分钟前
坚强的广山完成签到,获得积分0
1分钟前
贪玩的半仙完成签到,获得积分10
1分钟前
研友_VZG7GZ应助Shuo Yang采纳,获得10
1分钟前
路痴完成签到,获得积分10
2分钟前
老石完成签到 ,获得积分10
2分钟前
鉴定为学计算学的完成签到,获得积分10
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Sparrow0011发布了新的文献求助10
3分钟前
Ni发布了新的文献求助10
3分钟前
Ying发布了新的文献求助10
3分钟前
通科研完成签到 ,获得积分10
3分钟前
Shuo Yang发布了新的文献求助10
3分钟前
乐乐应助璀璨的饺子采纳,获得10
3分钟前
酷波er应助萤火虫啦啦采纳,获得10
4分钟前
4分钟前
4分钟前
顺顺发布了新的文献求助10
4分钟前
4分钟前
深情安青应助顺顺采纳,获得30
4分钟前
矢思然完成签到,获得积分10
4分钟前
挚友完成签到 ,获得积分20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
Shuo Yang发布了新的文献求助10
5分钟前
hdx完成签到 ,获得积分10
5分钟前
黄花菜完成签到 ,获得积分0
5分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
科目三应助Dongyu采纳,获得10
8分钟前
8分钟前
Dongyu发布了新的文献求助10
8分钟前
星辰大海应助科研通管家采纳,获得10
9分钟前
Dongyu完成签到,获得积分10
9分钟前
10分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422896
求助须知:如何正确求助?哪些是违规求助? 3023268
关于积分的说明 8903959
捐赠科研通 2710710
什么是DOI,文献DOI怎么找? 1486669
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682341