Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS

甲状腺结节 微钙化 卷积神经网络 计算机科学 放射科 甲状腺 医学 Sørensen–骰子系数 分割 人工智能 细针穿刺 超声波 图像分割 活检 乳腺摄影术 内科学 癌症 乳腺癌
作者
Jingqi Zhang,Qingsong Wang,Jingwen Zhao,Hui Yu,Fei Wang,Jie Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (20): 205021-205021 被引量:1
标识
DOI:10.1088/1361-6560/acfdf0
摘要

Objective. There has been a considerable amount of computer-aided diagnosis (CAD) methods highlighted in the field of ultrasonic examination (USE) of thyroid nodules. However, few researches focused on the automatic risk classification, which was the basis for determining whether fine needle aspiration (FNA) was needed. The aim of this work was to implement automatic risk level assessment of thyroid nodules.Approach. Firstly, 1862 cases of thyroid nodules with the results of USE and FNA were collected as the dataset. Then, an improved U-Net++ model was utilized for segmenting thyroid nodules in ultrasound images automatically. Finally, the segmentation result was imported into a multi-task convolutional neural network (MT-CNN), the design of which was based on the clinical guideline called KWAK TI-RADS. Apart from the category of benign and malignant, the MT-CNN also exported the classification result of four malignant features, solid component (SC), hypoechogenicity or marked hypoechogenicity (HMH), microlobulated or irregular margin (MIM), microcalcification (MC), which were used for counting the risk level in KWAK TI-RADS.Main results. The performance of the improved U-Net++ was evaluated on our test set, including 302 cases. The Dice coefficient and intersection over union reached 0.899, 0.816, respectively. The classification accuracy rates of SC, HMH, MIM, MC, were 94.5%, 92.8%, 86.1%, 88.9%, while the false positive (FP) rate was 6.0%, 5.6%, 10.6%, 12.9% respectively. As for the category of benign and malignant, the precision and recall rates were 93.7% and 94.4%.Significance. The proposed CAD method showed favourable performance in the diagnosis of thyroid nodules. Compared with other methods, it could provide reports closer to clinical practice for doctors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
波比不菜发布了新的文献求助10
刚刚
搜集达人应助小昊采纳,获得10
刚刚
科研通AI5应助研友_LOKqmL采纳,获得10
刚刚
努力搬砖努力干完成签到,获得积分10
刚刚
王七七发布了新的文献求助10
1秒前
gao完成签到,获得积分10
1秒前
Golden完成签到,获得积分10
2秒前
2秒前
2秒前
李健应助kopew采纳,获得10
2秒前
翟小七发布了新的文献求助10
2秒前
Orange应助一念初见采纳,获得10
2秒前
852应助吃颗电池采纳,获得10
3秒前
DongWei95完成签到,获得积分10
3秒前
烟花应助Gcheai_6采纳,获得10
3秒前
3秒前
yu_z完成签到 ,获得积分10
4秒前
饭二完成签到,获得积分10
4秒前
如沐春风发布了新的文献求助10
5秒前
He完成签到,获得积分10
5秒前
CC完成签到,获得积分10
6秒前
圆听听完成签到 ,获得积分10
7秒前
guhuihaozi发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
包容渊思发布了新的文献求助10
8秒前
Akim应助Liu采纳,获得10
8秒前
七七完成签到,获得积分10
8秒前
FashionBoy应助暮倦采纳,获得10
9秒前
Cadre发布了新的文献求助10
9秒前
英俊的铭应助Ffffa采纳,获得10
9秒前
10秒前
10秒前
11秒前
wxx发布了新的文献求助10
12秒前
Jaaay完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助50
13秒前
浮游应助风中莫英采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068898
求助须知:如何正确求助?哪些是违规求助? 4290461
关于积分的说明 13367590
捐赠科研通 4110300
什么是DOI,文献DOI怎么找? 2250926
邀请新用户注册赠送积分活动 1256106
关于科研通互助平台的介绍 1188606