Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS

甲状腺结节 微钙化 卷积神经网络 计算机科学 放射科 甲状腺 医学 Sørensen–骰子系数 分割 人工智能 细针穿刺 超声波 图像分割 活检 乳腺摄影术 内科学 癌症 乳腺癌
作者
Jingqi Zhang,Qingsong Wang,Jingwen Zhao,Hui Yu,Fei Wang,Jie Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (20): 205021-205021 被引量:1
标识
DOI:10.1088/1361-6560/acfdf0
摘要

Objective. There has been a considerable amount of computer-aided diagnosis (CAD) methods highlighted in the field of ultrasonic examination (USE) of thyroid nodules. However, few researches focused on the automatic risk classification, which was the basis for determining whether fine needle aspiration (FNA) was needed. The aim of this work was to implement automatic risk level assessment of thyroid nodules.Approach. Firstly, 1862 cases of thyroid nodules with the results of USE and FNA were collected as the dataset. Then, an improved U-Net++ model was utilized for segmenting thyroid nodules in ultrasound images automatically. Finally, the segmentation result was imported into a multi-task convolutional neural network (MT-CNN), the design of which was based on the clinical guideline called KWAK TI-RADS. Apart from the category of benign and malignant, the MT-CNN also exported the classification result of four malignant features, solid component (SC), hypoechogenicity or marked hypoechogenicity (HMH), microlobulated or irregular margin (MIM), microcalcification (MC), which were used for counting the risk level in KWAK TI-RADS.Main results. The performance of the improved U-Net++ was evaluated on our test set, including 302 cases. The Dice coefficient and intersection over union reached 0.899, 0.816, respectively. The classification accuracy rates of SC, HMH, MIM, MC, were 94.5%, 92.8%, 86.1%, 88.9%, while the false positive (FP) rate was 6.0%, 5.6%, 10.6%, 12.9% respectively. As for the category of benign and malignant, the precision and recall rates were 93.7% and 94.4%.Significance. The proposed CAD method showed favourable performance in the diagnosis of thyroid nodules. Compared with other methods, it could provide reports closer to clinical practice for doctors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到,获得积分10
1秒前
健忘的鬼神完成签到,获得积分20
2秒前
3秒前
4秒前
Jadedew完成签到,获得积分10
5秒前
CipherSage应助YangYue采纳,获得10
5秒前
平常康发布了新的文献求助10
9秒前
9秒前
打打应助默默安双采纳,获得10
10秒前
10秒前
Sue完成签到,获得积分10
12秒前
13秒前
14秒前
MYunn完成签到,获得积分10
14秒前
超菜完成签到,获得积分10
15秒前
18秒前
MYunn发布了新的文献求助10
19秒前
从心随缘完成签到 ,获得积分10
19秒前
19秒前
TAO完成签到,获得积分10
21秒前
青山完成签到,获得积分10
21秒前
充电宝应助别偷我增肌粉采纳,获得10
22秒前
默默安双发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
树懒在橘子洲数星星完成签到,获得积分10
24秒前
昏睡的蟠桃应助欠虐宝宝采纳,获得200
25秒前
26秒前
和谐谷菱完成签到 ,获得积分20
26秒前
du发布了新的文献求助20
31秒前
theverve完成签到,获得积分10
31秒前
kkkkkk发布了新的文献求助30
32秒前
34秒前
今后应助刘波采纳,获得10
34秒前
AE86完成签到,获得积分10
35秒前
满意的小鸽子完成签到,获得积分10
35秒前
37秒前
kkkkkk完成签到,获得积分10
37秒前
Gulu_完成签到 ,获得积分10
39秒前
hjl90527完成签到,获得积分20
40秒前
Quincy发布了新的文献求助10
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150