Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS

甲状腺结节 微钙化 卷积神经网络 计算机科学 放射科 甲状腺 医学 Sørensen–骰子系数 分割 人工智能 细针穿刺 超声波 图像分割 活检 乳腺摄影术 内科学 癌症 乳腺癌
作者
Jingqi Zhang,Qingsong Wang,Jingwen Zhao,Hui Yu,Fei Wang,Jie Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (20): 205021-205021 被引量:1
标识
DOI:10.1088/1361-6560/acfdf0
摘要

Objective. There has been a considerable amount of computer-aided diagnosis (CAD) methods highlighted in the field of ultrasonic examination (USE) of thyroid nodules. However, few researches focused on the automatic risk classification, which was the basis for determining whether fine needle aspiration (FNA) was needed. The aim of this work was to implement automatic risk level assessment of thyroid nodules.Approach. Firstly, 1862 cases of thyroid nodules with the results of USE and FNA were collected as the dataset. Then, an improved U-Net++ model was utilized for segmenting thyroid nodules in ultrasound images automatically. Finally, the segmentation result was imported into a multi-task convolutional neural network (MT-CNN), the design of which was based on the clinical guideline called KWAK TI-RADS. Apart from the category of benign and malignant, the MT-CNN also exported the classification result of four malignant features, solid component (SC), hypoechogenicity or marked hypoechogenicity (HMH), microlobulated or irregular margin (MIM), microcalcification (MC), which were used for counting the risk level in KWAK TI-RADS.Main results. The performance of the improved U-Net++ was evaluated on our test set, including 302 cases. The Dice coefficient and intersection over union reached 0.899, 0.816, respectively. The classification accuracy rates of SC, HMH, MIM, MC, were 94.5%, 92.8%, 86.1%, 88.9%, while the false positive (FP) rate was 6.0%, 5.6%, 10.6%, 12.9% respectively. As for the category of benign and malignant, the precision and recall rates were 93.7% and 94.4%.Significance. The proposed CAD method showed favourable performance in the diagnosis of thyroid nodules. Compared with other methods, it could provide reports closer to clinical practice for doctors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
garrick发布了新的文献求助10
1秒前
2秒前
科研通AI6.1应助严西采纳,获得10
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
ASDq发布了新的文献求助10
4秒前
拉拉发布了新的文献求助10
4秒前
李大姐发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
勤奋的小伙完成签到,获得积分10
5秒前
5秒前
科研通AI6.1应助Yely采纳,获得10
5秒前
研友_VZG7GZ应助平淡菠萝采纳,获得10
5秒前
离郢完成签到 ,获得积分10
6秒前
6秒前
太阳雨发布了新的文献求助10
6秒前
lllllll完成签到,获得积分10
7秒前
117完成签到 ,获得积分10
7秒前
HOPE完成签到,获得积分10
8秒前
tttt发布了新的文献求助10
8秒前
8秒前
kk发布了新的文献求助10
8秒前
wanci应助若即若离采纳,获得10
8秒前
9秒前
吉吉国王饲养员完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
9秒前
酵母君完成签到,获得积分10
10秒前
YZ完成签到,获得积分10
10秒前
BowieHuang应助拉拉采纳,获得10
10秒前
6666应助拉拉采纳,获得10
10秒前
10秒前
imp发布了新的文献求助10
10秒前
轻风完成签到,获得积分20
11秒前
11秒前
大意的罡发布了新的文献求助10
11秒前
Tyw发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214