Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS

甲状腺结节 微钙化 卷积神经网络 计算机科学 放射科 甲状腺 医学 Sørensen–骰子系数 分割 人工智能 细针穿刺 超声波 图像分割 活检 乳腺摄影术 内科学 癌症 乳腺癌
作者
Jingqi Zhang,Qingsong Wang,Jingwen Zhao,Hui Yu,Fei Wang,Jie Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (20): 205021-205021 被引量:1
标识
DOI:10.1088/1361-6560/acfdf0
摘要

Objective. There has been a considerable amount of computer-aided diagnosis (CAD) methods highlighted in the field of ultrasonic examination (USE) of thyroid nodules. However, few researches focused on the automatic risk classification, which was the basis for determining whether fine needle aspiration (FNA) was needed. The aim of this work was to implement automatic risk level assessment of thyroid nodules.Approach. Firstly, 1862 cases of thyroid nodules with the results of USE and FNA were collected as the dataset. Then, an improved U-Net++ model was utilized for segmenting thyroid nodules in ultrasound images automatically. Finally, the segmentation result was imported into a multi-task convolutional neural network (MT-CNN), the design of which was based on the clinical guideline called KWAK TI-RADS. Apart from the category of benign and malignant, the MT-CNN also exported the classification result of four malignant features, solid component (SC), hypoechogenicity or marked hypoechogenicity (HMH), microlobulated or irregular margin (MIM), microcalcification (MC), which were used for counting the risk level in KWAK TI-RADS.Main results. The performance of the improved U-Net++ was evaluated on our test set, including 302 cases. The Dice coefficient and intersection over union reached 0.899, 0.816, respectively. The classification accuracy rates of SC, HMH, MIM, MC, were 94.5%, 92.8%, 86.1%, 88.9%, while the false positive (FP) rate was 6.0%, 5.6%, 10.6%, 12.9% respectively. As for the category of benign and malignant, the precision and recall rates were 93.7% and 94.4%.Significance. The proposed CAD method showed favourable performance in the diagnosis of thyroid nodules. Compared with other methods, it could provide reports closer to clinical practice for doctors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
kanong完成签到,获得积分0
6秒前
Joy完成签到,获得积分10
7秒前
9秒前
羽冰酒完成签到 ,获得积分10
9秒前
123完成签到 ,获得积分10
9秒前
大个应助阿萨卡先生采纳,获得10
12秒前
Oliver完成签到 ,获得积分10
15秒前
风趣朝雪完成签到,获得积分10
18秒前
dlzheng完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
LY完成签到 ,获得积分10
23秒前
微笑高山完成签到 ,获得积分10
25秒前
kk完成签到,获得积分10
26秒前
Liii完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
cathyfly1006发布了新的文献求助10
28秒前
WWW完成签到,获得积分10
29秒前
含糊的慕凝完成签到 ,获得积分10
29秒前
Joy完成签到,获得积分10
33秒前
Akim应助莨菪采纳,获得10
33秒前
MM完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
liu95完成签到 ,获得积分10
35秒前
吉吉完成签到,获得积分10
38秒前
44秒前
凡凡完成签到,获得积分10
45秒前
cathyfly1006完成签到,获得积分10
49秒前
沙脑完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助10
55秒前
大熊完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
zxdzaz完成签到 ,获得积分10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
沭阳检验医师完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715459
求助须知:如何正确求助?哪些是违规求助? 5234383
关于积分的说明 15274394
捐赠科研通 4866277
什么是DOI,文献DOI怎么找? 2612877
邀请新用户注册赠送积分活动 1563033
关于科研通互助平台的介绍 1520447