Remote Sensing of Soil Organic Carbon at Regional Scale Based on Deep Learning: A Case Study of Agro-Pastoral Ecotone in Northern China

干旱 反演(地质) 土壤碳 遥感 环境科学 计算机科学 交错带 随机森林 土壤科学 地质学 人工智能 土壤水分 生态学 地貌学 古生物学 灌木 构造盆地 生物
作者
Zichen Guo,Yuqiang Li,Xuyang Wang,Xiangwen Gong,Yun Chen,Wenjie Cao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (15): 3846-3846 被引量:2
标识
DOI:10.3390/rs15153846
摘要

The North China agro–pastoral zone is a large, ecologically fragile zone in the arid and semi-arid regions. Quantitative remote sensing inversion of soil organic carbon (SOC) in this region can facilitate understanding of the current status of degraded land restoration and provide data support for carbon cycling research in the region. Deep learning (DNN) for SOC inversion has been W.a hot topic over the past decade, but there have been few studies at the regional scale in the arid and semi-arid zones. In this study, a DNN model with five hidden layers and five skip connections was established using 644 spatially distributed SOC samples and Landsat 8 OLI imagery. The model was compared with the random forest algorithm in terms of generalization ability. The main conclusions were as follows: 1. The DNN algorithm can establish a high-precision SOC inversion model (R2 = 0.52, RMSE = 0.7), with 90% of errors concentrated in the range of −2.5 to 2.5 kg·C/m2; 2. the Boruta variable-screening algorithm can effectively improve the model accuracy of the random forest algorithm, but due to the DNN’s better ability to mine hidden information in the data, the improvement effect on the DNN model accuracy is limited; 3. the SOC samples in arid and semi-arid areas are highly positively skewed, with a significant impact on the modeling accuracy of DNN, and conversion is required to obtain a model with better generalization ability; and 4. in arid and semi-arid regions, SOC has a weak correlation with vegetation indices but a stronger correlation with temperature, elevation, and aridity. This study established a reliable deep learning model for SOC density in a large arid and semi-arid region, providing a reference and framework for the establishment of SOC inversion models in other regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Owen应助葛二蛋采纳,获得10
1秒前
ll发布了新的文献求助10
3秒前
一一完成签到,获得积分10
4秒前
科研猫完成签到,获得积分10
4秒前
+=发布了新的文献求助10
4秒前
4秒前
songsong发布了新的文献求助10
5秒前
李爱国应助jing111采纳,获得30
6秒前
lmh完成签到,获得积分10
8秒前
王子语完成签到,获得积分10
8秒前
科研通AI2S应助Marco采纳,获得10
8秒前
传奇3应助yinxinyi采纳,获得30
9秒前
9秒前
chenling完成签到,获得积分10
10秒前
11秒前
12秒前
今后应助STAN采纳,获得10
13秒前
13秒前
13秒前
乔治发布了新的文献求助10
14秒前
吴一一完成签到,获得积分10
15秒前
ymym发布了新的文献求助10
16秒前
丘比特应助爱笑的蔚蔚采纳,获得10
17秒前
jing111发布了新的文献求助30
17秒前
EKKOO发布了新的文献求助10
18秒前
19秒前
小董不懂发布了新的文献求助10
19秒前
jt完成签到,获得积分10
20秒前
乔治完成签到,获得积分20
21秒前
22秒前
22秒前
SciGPT应助ymym采纳,获得10
23秒前
Hello应助水分子采纳,获得10
23秒前
25秒前
贪玩的誉发布了新的文献求助50
25秒前
嗯哼应助Everglow采纳,获得20
25秒前
咸鱼中下游应助Yjj采纳,获得30
26秒前
晚晚发布了新的文献求助10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3225810
求助须知:如何正确求助?哪些是违规求助? 2874588
关于积分的说明 8186816
捐赠科研通 2541636
什么是DOI,文献DOI怎么找? 1372245
科研通“疑难数据库(出版商)”最低求助积分说明 646458
邀请新用户注册赠送积分活动 620753