S3Net: Superpixel-Guided Self-Supervised Learning Network for Multitemporal Image Change Detection

计算机科学 人工智能 变更检测 阈值 模式识别(心理学) 分割 特征(语言学) 学习迁移 目标检测 特征提取 图像分割 图像(数学) 计算机视觉 语言学 哲学
作者
Tao Zhan,Maoguo Gong,Xiangming Jiang,Erlei Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2023.3300308
摘要

Deep learning (DL) have recently achieved outstanding performance in change detection of multitemporal images. However, most existing DL-based change detection methods still suffer from the problem of insufficient labeled training samples. To overcome this limitation, an unsupervised superpixel-guided self-supervised learning network (S3Net) is proposed for detecting changes occurred on the land surface. By performing principal component analysis on two input images, a triple-channel pseudo-color image containing the main information of both images is first generated, which is used for superpixel segmentation to produce homogeneous image objects. Then, a siamese network composing of two identical subnetworks with shared weight based on transfer learning is trained for pretext task in a self-supervised learning way, aiming to obtain multiscale object-level spatial feature difference images. On this basis, a high-quality difference image is generated by incorporating the pixel-level and object-level difference information using a simple weighted fusion strategy, which can be analyzed by thresholding to produce the final binary change map. The experimental results on four real-world datasets from different sensors show that the proposed approach can obtain superior performance in comparison with several state-of-the-art change detection methods, which further demonstrates its effectiveness and practicability. We make our data and code publicly available (https://github.com/OMEGA-RS/S3Net_CD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qcwindchasing完成签到,获得积分10
1秒前
畅快的胡萝卜完成签到,获得积分10
1秒前
fancyiii发布了新的文献求助10
1秒前
Lum1na发布了新的文献求助10
1秒前
ling发布了新的文献求助10
2秒前
大模型应助MORNING采纳,获得10
2秒前
3秒前
卡卡西应助re采纳,获得10
3秒前
JamesPei应助re采纳,获得10
3秒前
嗯呢应助坦率紫烟采纳,获得10
4秒前
5秒前
顾矜应助十三采纳,获得10
5秒前
BBBBB发布了新的文献求助30
6秒前
flywee发布了新的文献求助10
10秒前
华hua发布了新的文献求助10
10秒前
领导范儿应助fffff采纳,获得10
12秒前
大模型应助ling采纳,获得10
12秒前
13秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
20秒前
22秒前
嘴嘴完成签到,获得积分10
23秒前
坐忘道发布了新的文献求助10
23秒前
zzzzzzzz完成签到,获得积分10
24秒前
哆啦A梦发布了新的文献求助10
24秒前
conjee发布了新的文献求助30
24秒前
26秒前
大个应助lindahuang采纳,获得10
28秒前
29秒前
宁天发布了新的文献求助10
29秒前
Hopelife完成签到,获得积分10
29秒前
我是老大应助N型半导体采纳,获得10
29秒前
xuaotian完成签到,获得积分10
29秒前
LXH发布了新的文献求助30
32秒前
丰富的土豆应助cody采纳,获得10
33秒前
哆啦A梦完成签到,获得积分10
34秒前
34秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303