S3Net: Superpixel-Guided Self-Supervised Learning Network for Multitemporal Image Change Detection

计算机科学 人工智能 变更检测 阈值 模式识别(心理学) 分割 特征(语言学) 学习迁移 目标检测 特征提取 图像分割 图像(数学) 计算机视觉 哲学 语言学
作者
Tao Zhan,Maoguo Gong,Xiangming Jiang,Erlei Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3300308
摘要

Deep learning (DL) have recently achieved outstanding performance in change detection of multitemporal images. However, most existing DL-based change detection methods still suffer from the problem of insufficient labeled training samples. To overcome this limitation, an unsupervised superpixel-guided self-supervised learning network (S3Net) is proposed for detecting changes occurred on the land surface. By performing principal component analysis on two input images, a triple-channel pseudo-color image containing the main information of both images is first generated, which is used for superpixel segmentation to produce homogeneous image objects. Then, a siamese network composing of two identical subnetworks with shared weight based on transfer learning is trained for pretext task in a self-supervised learning way, aiming to obtain multiscale object-level spatial feature difference images. On this basis, a high-quality difference image is generated by incorporating the pixel-level and object-level difference information using a simple weighted fusion strategy, which can be analyzed by thresholding to produce the final binary change map. The experimental results on four real-world datasets from different sensors show that the proposed approach can obtain superior performance in comparison with several state-of-the-art change detection methods, which further demonstrates its effectiveness and practicability. We make our data and code publicly available (https://github.com/OMEGA-RS/S3Net_CD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
sulh发布了新的文献求助10
1秒前
今后应助1111_bb采纳,获得10
2秒前
Akim应助要减肥的从筠采纳,获得10
4秒前
流浪发布了新的文献求助10
4秒前
Mor0se完成签到,获得积分10
5秒前
大模型应助科研小狗采纳,获得10
6秒前
6秒前
YongGanNN发布了新的文献求助10
7秒前
虚幻羊发布了新的文献求助10
7秒前
TAN完成签到 ,获得积分10
8秒前
xinxinwen完成签到,获得积分20
8秒前
8秒前
大模型应助Mayday采纳,获得30
8秒前
柠曦完成签到,获得积分10
9秒前
充电宝应助星星采纳,获得10
9秒前
宇宙尽头的餐馆完成签到,获得积分10
10秒前
10秒前
弄井发布了新的文献求助10
10秒前
赘婿应助嘟嘟采纳,获得10
10秒前
11秒前
11秒前
虚幻羊完成签到,获得积分10
12秒前
12秒前
柠曦发布了新的文献求助10
13秒前
14秒前
小二郎应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得30
15秒前
Akim应助科研通管家采纳,获得10
15秒前
无尤发布了新的文献求助10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
兴猡应助科研通管家采纳,获得10
16秒前
YXY应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125274
求助须知:如何正确求助?哪些是违规求助? 2775580
关于积分的说明 7727081
捐赠科研通 2431059
什么是DOI,文献DOI怎么找? 1291657
科研通“疑难数据库(出版商)”最低求助积分说明 622216
版权声明 600368