S3Net: Superpixel-Guided Self-Supervised Learning Network for Multitemporal Image Change Detection

计算机科学 人工智能 变更检测 阈值 模式识别(心理学) 分割 特征(语言学) 学习迁移 目标检测 特征提取 图像分割 图像(数学) 计算机视觉 哲学 语言学
作者
Tao Zhan,Maoguo Gong,Xiangming Jiang,Erlei Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2023.3300308
摘要

Deep learning (DL) have recently achieved outstanding performance in change detection of multitemporal images. However, most existing DL-based change detection methods still suffer from the problem of insufficient labeled training samples. To overcome this limitation, an unsupervised superpixel-guided self-supervised learning network (S3Net) is proposed for detecting changes occurred on the land surface. By performing principal component analysis on two input images, a triple-channel pseudo-color image containing the main information of both images is first generated, which is used for superpixel segmentation to produce homogeneous image objects. Then, a siamese network composing of two identical subnetworks with shared weight based on transfer learning is trained for pretext task in a self-supervised learning way, aiming to obtain multiscale object-level spatial feature difference images. On this basis, a high-quality difference image is generated by incorporating the pixel-level and object-level difference information using a simple weighted fusion strategy, which can be analyzed by thresholding to produce the final binary change map. The experimental results on four real-world datasets from different sensors show that the proposed approach can obtain superior performance in comparison with several state-of-the-art change detection methods, which further demonstrates its effectiveness and practicability. We make our data and code publicly available (https://github.com/OMEGA-RS/S3Net_CD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nn关闭了nn文献求助
1秒前
2秒前
pw完成签到 ,获得积分10
2秒前
3秒前
小米完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
zyzhnu完成签到,获得积分10
3秒前
顺其自然_666888完成签到,获得积分10
3秒前
3秒前
12305014077完成签到 ,获得积分10
4秒前
lxy19980627完成签到,获得积分20
4秒前
Rachel完成签到,获得积分10
4秒前
5秒前
欢欢完成签到 ,获得积分10
5秒前
啊哈完成签到,获得积分10
5秒前
5秒前
Xltox完成签到,获得积分10
6秒前
小蘑菇应助wgm采纳,获得10
6秒前
我是老大应助激情的晓博采纳,获得30
6秒前
鹤轸完成签到,获得积分10
7秒前
cyq完成签到,获得积分10
7秒前
8秒前
8秒前
Leon完成签到,获得积分10
8秒前
ding应助清脆的念柏采纳,获得10
10秒前
10秒前
wefs发布了新的文献求助10
10秒前
我是老大应助开口笑采纳,获得10
11秒前
玛卡巴卡发布了新的文献求助10
11秒前
小熊梅尼耶给小熊梅尼耶的求助进行了留言
12秒前
12秒前
xin_qin_Wei完成签到 ,获得积分20
12秒前
666JACS完成签到,获得积分10
12秒前
爆米花应助自由灵安采纳,获得10
12秒前
13秒前
微笑亿先发布了新的文献求助10
14秒前
潇洒的如松完成签到,获得积分10
14秒前
浮游应助林朝阳采纳,获得10
14秒前
14秒前
陈某某发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244