A review on deep learning in planetary gearbox health state recognition: methods, applications, and dataset publication

深度学习 计算机科学 人工智能 卷积神经网络 断层(地质) 机器学习 玻尔兹曼机 人工神经网络 自编码 地震学 地质学
作者
Dongdong Liu,Lingli Cui,Weidong Cheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 012002-012002 被引量:75
标识
DOI:10.1088/1361-6501/acf390
摘要

Abstract Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms of fault diagnosis. Deep learning has attracted increasing attention in intelligent fault diagnosis and has been successfully adopted for planetary gearbox fault diagnosis, avoiding the difficulty in manually analyzing complex fault features with signal processing methods. This paper presents a comprehensive review of deep learning-based planetary gearbox health state recognition. First, the challenges caused by the complex vibration characteristics of planetary gearboxes in fault diagnosis are analyzed. Second, according to the popularity of deep learning in planetary gearbox fault diagnosis, we briefly introduce six mainstream algorithms, i.e. autoencoder, deep Boltzmann machine, convolutional neural network, transformer, generative adversarial network, and graph neural network, and some variants of them. Then, the applications of these methods to planetary gearbox fault diagnosis are reviewed. Finally, the research prospects and challenges in this research are discussed. According to the challenges, a dataset is introduced in this paper to facilitate future investigations. We expect that this paper can provide new graduate students, institutions and companies with a preliminary understanding of methods used in this field. The dataset can be downloaded from https://github.com/Liudd-BJUT/WT-planetary-gearbox-dataset .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助带着阳光跑采纳,获得10
刚刚
xinxin完成签到,获得积分10
刚刚
清爽的如娆完成签到,获得积分10
刚刚
情怀应助鸭梨很大采纳,获得20
2秒前
小马甲应助cometx采纳,获得10
2秒前
3秒前
3秒前
可爱的函函应助purejun采纳,获得10
3秒前
郭正霄发布了新的文献求助10
4秒前
5秒前
shiyu完成签到,获得积分10
6秒前
MOON完成签到,获得积分10
6秒前
花生爱发文完成签到,获得积分10
6秒前
6秒前
噜噜噜完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
思源应助小周棒棒哒采纳,获得10
8秒前
purejun完成签到,获得积分20
9秒前
Suger发布了新的文献求助10
9秒前
zhang发布了新的文献求助10
9秒前
9秒前
9秒前
limanglu完成签到,获得积分10
10秒前
木木杉完成签到 ,获得积分10
10秒前
彭于晏应助伍慕儿采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
在水一方应助yuan采纳,获得10
12秒前
13秒前
徐大夫发布了新的文献求助30
13秒前
Chos1nz应助无私的念文采纳,获得10
14秒前
斯文败类应助juanjuan采纳,获得10
14秒前
14秒前
liunian完成签到,获得积分20
14秒前
lawliet发布了新的文献求助10
14秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702400
求助须知:如何正确求助?哪些是违规求助? 3252259
关于积分的说明 9878647
捐赠科研通 2964370
什么是DOI,文献DOI怎么找? 1625600
邀请新用户注册赠送积分活动 770123
科研通“疑难数据库(出版商)”最低求助积分说明 742869