亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Blade sequencing optimization of aero-engine based on deep reinforcement learning

强化学习 指针(用户界面) 分类 计算机科学 人工智能 转子(电动) 工程类 算法 机械工程
作者
Chuanzhi Sun,Huilin Wu,Lü Qi,Yinchu Wang,Yongmeng Liu,Jiubin Tan
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:142: 108580-108580
标识
DOI:10.1016/j.ast.2023.108580
摘要

The unreasonable sorting of single-stage rotor blades leads to the over-tolerance of rotor unbalance, which is the main cause of excessive engine vibration. Aiming at the problems of long search time, poor repeatability, weak adaptability and difficulty in obtaining global optimum by using heuristic algorithm for blade sorting, this paper presents a deep reinforcement learning method is proposed to solve the blade ordering problem. A pointer network model including an encoder and a decoder structure is established. For the case where the blade data cannot be obtained, the unbalance of the single-stage rotor is used as the reward function, and the pointer network model is trained by the Actor Critic reinforcement learning algorithm. The experimental results show that the trained enhanced pointer network model can directly perform end-to-end reasoning on the input sequence, avoiding the iterative solution process of traditional heuristic algorithms, and has high solution efficiency. Using the enhanced pointer network blade sorting optimization model in this paper to sort a set of blade sequences, the unbalanced value of the rotor after sorting is 14.78 g.mm, which is 84.8% better than the genetic algorithm, and the search speed is increased by 95.9%. The results show that the method can quickly and accurately give the arrangement order of the leaves, and the proposed model has generalization. It can provide a reliable measurement method for rotor assembly measurement of large engine manufacturing enterprises such as China Aero-Engine Company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunhhhh完成签到 ,获得积分10
3秒前
伍奄完成签到,获得积分10
12秒前
朴实飞松完成签到 ,获得积分10
17秒前
17秒前
yx_cheng应助执着乐双采纳,获得30
18秒前
艺涵完成签到,获得积分10
19秒前
21秒前
小胡萝白发布了新的文献求助10
23秒前
CipherSage应助虚心沂采纳,获得10
24秒前
彭于晏应助小胡萝白采纳,获得10
27秒前
Charles完成签到,获得积分10
32秒前
anonym11完成签到,获得积分10
32秒前
CodeCraft应助kingyz采纳,获得20
35秒前
ice完成签到 ,获得积分10
39秒前
大个应助mmyhn采纳,获得10
41秒前
希望天下0贩的0应助akakns采纳,获得10
42秒前
53秒前
我爱康康文献完成签到 ,获得积分10
56秒前
akakns发布了新的文献求助10
59秒前
yuyuyu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
起风了完成签到 ,获得积分10
1分钟前
核桃发布了新的文献求助10
1分钟前
Dz1990m完成签到,获得积分10
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
zhscu完成签到,获得积分10
1分钟前
小马甲应助Dr.miao采纳,获得10
1分钟前
cqhecq完成签到,获得积分10
1分钟前
健壮的若冰完成签到 ,获得积分10
1分钟前
1分钟前
精神是块骨头完成签到,获得积分10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
艺高人胆大鸡腿完成签到 ,获得积分10
1分钟前
姜忆霜完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
田様应助迷路的依波采纳,获得30
1分钟前
酷波er应助xiao采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994889
求助须知:如何正确求助?哪些是违规求助? 3535040
关于积分的说明 11267040
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806478
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762