Blade sequencing optimization of aero-engine based on deep reinforcement learning

强化学习 指针(用户界面) 分类 计算机科学 人工智能 转子(电动) 工程类 算法 机械工程
作者
Chuanzhi Sun,Huilin Wu,Qing Lu,Yinchu Wang,Yongmeng Liu,Jiubin Tan
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:142: 108580-108580 被引量:7
标识
DOI:10.1016/j.ast.2023.108580
摘要

The unreasonable sorting of single-stage rotor blades leads to the over-tolerance of rotor unbalance, which is the main cause of excessive engine vibration. Aiming at the problems of long search time, poor repeatability, weak adaptability and difficulty in obtaining global optimum by using heuristic algorithm for blade sorting, this paper presents a deep reinforcement learning method is proposed to solve the blade ordering problem. A pointer network model including an encoder and a decoder structure is established. For the case where the blade data cannot be obtained, the unbalance of the single-stage rotor is used as the reward function, and the pointer network model is trained by the Actor Critic reinforcement learning algorithm. The experimental results show that the trained enhanced pointer network model can directly perform end-to-end reasoning on the input sequence, avoiding the iterative solution process of traditional heuristic algorithms, and has high solution efficiency. Using the enhanced pointer network blade sorting optimization model in this paper to sort a set of blade sequences, the unbalanced value of the rotor after sorting is 14.78 g.mm, which is 84.8% better than the genetic algorithm, and the search speed is increased by 95.9%. The results show that the method can quickly and accurately give the arrangement order of the leaves, and the proposed model has generalization. It can provide a reliable measurement method for rotor assembly measurement of large engine manufacturing enterprises such as China Aero-Engine Company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋芋发布了新的文献求助10
刚刚
Nnn完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Mia完成签到 ,获得积分10
3秒前
ding应助花海采纳,获得10
3秒前
一个人的表情完成签到,获得积分10
3秒前
3秒前
嘎嘎嘎完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Baraka发布了新的文献求助10
4秒前
lws发布了新的文献求助10
4秒前
轻松明雪完成签到,获得积分10
4秒前
悟空发布了新的文献求助10
4秒前
5秒前
英吉利25发布了新的文献求助10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
借过123完成签到,获得积分10
5秒前
zgrmws应助科研通管家采纳,获得10
5秒前
lcpppppp驳回了Owen应助
5秒前
所所应助科研通管家采纳,获得10
5秒前
6秒前
FashionBoy应助可燃冰采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
若宫伊芙应助科研通管家采纳,获得10
6秒前
曾经富发布了新的文献求助10
6秒前
田様应助科研通管家采纳,获得10
6秒前
麻烦应助科研通管家采纳,获得10
6秒前
海蓝云天应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002