Blade sequencing optimization of aero-engine based on deep reinforcement learning

强化学习 指针(用户界面) 分类 计算机科学 人工智能 转子(电动) 工程类 算法 机械工程
作者
Chuanzhi Sun,Huilin Wu,Qing Lu,Yinchu Wang,Yongmeng Liu,Jiubin Tan
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:142: 108580-108580 被引量:7
标识
DOI:10.1016/j.ast.2023.108580
摘要

The unreasonable sorting of single-stage rotor blades leads to the over-tolerance of rotor unbalance, which is the main cause of excessive engine vibration. Aiming at the problems of long search time, poor repeatability, weak adaptability and difficulty in obtaining global optimum by using heuristic algorithm for blade sorting, this paper presents a deep reinforcement learning method is proposed to solve the blade ordering problem. A pointer network model including an encoder and a decoder structure is established. For the case where the blade data cannot be obtained, the unbalance of the single-stage rotor is used as the reward function, and the pointer network model is trained by the Actor Critic reinforcement learning algorithm. The experimental results show that the trained enhanced pointer network model can directly perform end-to-end reasoning on the input sequence, avoiding the iterative solution process of traditional heuristic algorithms, and has high solution efficiency. Using the enhanced pointer network blade sorting optimization model in this paper to sort a set of blade sequences, the unbalanced value of the rotor after sorting is 14.78 g.mm, which is 84.8% better than the genetic algorithm, and the search speed is increased by 95.9%. The results show that the method can quickly and accurately give the arrangement order of the leaves, and the proposed model has generalization. It can provide a reliable measurement method for rotor assembly measurement of large engine manufacturing enterprises such as China Aero-Engine Company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
jessie完成签到,获得积分10
刚刚
螃蟹完成签到,获得积分10
刚刚
xukaixuan001发布了新的文献求助10
1秒前
畅快的道之完成签到,获得积分10
1秒前
pms发布了新的文献求助10
1秒前
Skilixta完成签到,获得积分10
1秒前
司徒迎曼发布了新的文献求助10
2秒前
2秒前
Carol发布了新的文献求助10
2秒前
2秒前
科盲TCB发布了新的文献求助10
3秒前
小苹果汤完成签到,获得积分10
3秒前
3秒前
杨wx发布了新的文献求助50
3秒前
量子星尘发布了新的文献求助10
3秒前
张欣宇发布了新的文献求助10
3秒前
4秒前
会魔法的喵完成签到,获得积分10
4秒前
阿泽发布了新的文献求助10
4秒前
上官若男应助doctorw采纳,获得10
4秒前
乐乐应助小子采纳,获得10
5秒前
钟少应助misa采纳,获得10
5秒前
酷波er应助伤心的大亩猪采纳,获得10
5秒前
卫踏歌完成签到,获得积分10
5秒前
6秒前
湫殇发布了新的文献求助10
7秒前
香蕉诗蕊应助机智的寒天采纳,获得10
7秒前
周运来发布了新的文献求助10
7秒前
小马甲应助可可采纳,获得10
7秒前
ygqchem完成签到,获得积分10
8秒前
9秒前
科盲TCB完成签到,获得积分10
9秒前
ss完成签到,获得积分20
9秒前
非鱼完成签到,获得积分10
9秒前
9秒前
10秒前
lin完成签到 ,获得积分10
10秒前
赘婿应助Nobody采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450