Blade sequencing optimization of aero-engine based on deep reinforcement learning

强化学习 指针(用户界面) 分类 计算机科学 人工智能 转子(电动) 工程类 算法 机械工程
作者
Chuanzhi Sun,Huilin Wu,Lü Qi,Yinchu Wang,Yongmeng Liu,Jiubin Tan
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:142: 108580-108580
标识
DOI:10.1016/j.ast.2023.108580
摘要

The unreasonable sorting of single-stage rotor blades leads to the over-tolerance of rotor unbalance, which is the main cause of excessive engine vibration. Aiming at the problems of long search time, poor repeatability, weak adaptability and difficulty in obtaining global optimum by using heuristic algorithm for blade sorting, this paper presents a deep reinforcement learning method is proposed to solve the blade ordering problem. A pointer network model including an encoder and a decoder structure is established. For the case where the blade data cannot be obtained, the unbalance of the single-stage rotor is used as the reward function, and the pointer network model is trained by the Actor Critic reinforcement learning algorithm. The experimental results show that the trained enhanced pointer network model can directly perform end-to-end reasoning on the input sequence, avoiding the iterative solution process of traditional heuristic algorithms, and has high solution efficiency. Using the enhanced pointer network blade sorting optimization model in this paper to sort a set of blade sequences, the unbalanced value of the rotor after sorting is 14.78 g.mm, which is 84.8% better than the genetic algorithm, and the search speed is increased by 95.9%. The results show that the method can quickly and accurately give the arrangement order of the leaves, and the proposed model has generalization. It can provide a reliable measurement method for rotor assembly measurement of large engine manufacturing enterprises such as China Aero-Engine Company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
摘星012完成签到 ,获得积分10
1秒前
2秒前
law完成签到,获得积分10
2秒前
2秒前
飞鸟完成签到,获得积分10
3秒前
dubhe完成签到,获得积分10
3秒前
rusellw完成签到,获得积分20
3秒前
3秒前
叮咚雨发布了新的文献求助10
3秒前
lili发布了新的文献求助10
3秒前
4秒前
老毛发布了新的文献求助10
4秒前
4秒前
遇见发布了新的文献求助10
4秒前
薯愿发布了新的文献求助10
4秒前
11111发布了新的文献求助10
5秒前
5秒前
小陈子完成签到,获得积分10
5秒前
菠萝完成签到 ,获得积分10
5秒前
童童童完成签到,获得积分10
6秒前
光催德罗巴完成签到,获得积分10
7秒前
梦XING完成签到 ,获得积分10
7秒前
xx_2000完成签到,获得积分10
8秒前
8秒前
希望天下0贩的0应助浩然采纳,获得10
9秒前
JUYIN完成签到,获得积分10
9秒前
刻刻完成签到,获得积分10
9秒前
Foremelon完成签到,获得积分10
9秒前
MoriZhang完成签到,获得积分10
9秒前
lili完成签到,获得积分10
9秒前
10秒前
11111完成签到,获得积分20
10秒前
kk完成签到,获得积分10
10秒前
酷波er应助劣根采纳,获得10
11秒前
hzx完成签到,获得积分10
11秒前
妮子要学习完成签到,获得积分10
11秒前
11秒前
chen完成签到,获得积分10
11秒前
个性尔槐完成签到,获得积分10
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143062
求助须知:如何正确求助?哪些是违规求助? 2794082
关于积分的说明 7809850
捐赠科研通 2450395
什么是DOI,文献DOI怎么找? 1303818
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384