Blade sequencing optimization of aero-engine based on deep reinforcement learning

强化学习 指针(用户界面) 分类 计算机科学 人工智能 转子(电动) 工程类 算法 机械工程
作者
Chuanzhi Sun,Huilin Wu,Qing Lu,Yinchu Wang,Yongmeng Liu,Jiubin Tan
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:142: 108580-108580 被引量:7
标识
DOI:10.1016/j.ast.2023.108580
摘要

The unreasonable sorting of single-stage rotor blades leads to the over-tolerance of rotor unbalance, which is the main cause of excessive engine vibration. Aiming at the problems of long search time, poor repeatability, weak adaptability and difficulty in obtaining global optimum by using heuristic algorithm for blade sorting, this paper presents a deep reinforcement learning method is proposed to solve the blade ordering problem. A pointer network model including an encoder and a decoder structure is established. For the case where the blade data cannot be obtained, the unbalance of the single-stage rotor is used as the reward function, and the pointer network model is trained by the Actor Critic reinforcement learning algorithm. The experimental results show that the trained enhanced pointer network model can directly perform end-to-end reasoning on the input sequence, avoiding the iterative solution process of traditional heuristic algorithms, and has high solution efficiency. Using the enhanced pointer network blade sorting optimization model in this paper to sort a set of blade sequences, the unbalanced value of the rotor after sorting is 14.78 g.mm, which is 84.8% better than the genetic algorithm, and the search speed is increased by 95.9%. The results show that the method can quickly and accurately give the arrangement order of the leaves, and the proposed model has generalization. It can provide a reliable measurement method for rotor assembly measurement of large engine manufacturing enterprises such as China Aero-Engine Company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白萝卜发布了新的文献求助10
刚刚
CodeCraft应助qq大魔王采纳,获得10
刚刚
NexusExplorer应助瓜瓜采纳,获得10
1秒前
10发布了新的文献求助10
1秒前
林柒发布了新的文献求助10
1秒前
2秒前
桃木林完成签到,获得积分10
2秒前
朱明星应助yuan采纳,获得10
2秒前
大个应助董大米采纳,获得10
3秒前
3秒前
wanci应助tianmafei采纳,获得10
3秒前
好运偏爱的那个男的完成签到,获得积分0
4秒前
Boston完成签到,获得积分10
4秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
maoamo2024发布了新的文献求助10
5秒前
GPTea应助科研通管家采纳,获得20
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
大模型应助AshleyD采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
果粒橙应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
yueyue3SCI完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490