Blade sequencing optimization of aero-engine based on deep reinforcement learning

强化学习 指针(用户界面) 分类 计算机科学 人工智能 转子(电动) 工程类 算法 机械工程
作者
Chuanzhi Sun,Huilin Wu,Qing Lu,Yinchu Wang,Yongmeng Liu,Jiubin Tan
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:142: 108580-108580 被引量:7
标识
DOI:10.1016/j.ast.2023.108580
摘要

The unreasonable sorting of single-stage rotor blades leads to the over-tolerance of rotor unbalance, which is the main cause of excessive engine vibration. Aiming at the problems of long search time, poor repeatability, weak adaptability and difficulty in obtaining global optimum by using heuristic algorithm for blade sorting, this paper presents a deep reinforcement learning method is proposed to solve the blade ordering problem. A pointer network model including an encoder and a decoder structure is established. For the case where the blade data cannot be obtained, the unbalance of the single-stage rotor is used as the reward function, and the pointer network model is trained by the Actor Critic reinforcement learning algorithm. The experimental results show that the trained enhanced pointer network model can directly perform end-to-end reasoning on the input sequence, avoiding the iterative solution process of traditional heuristic algorithms, and has high solution efficiency. Using the enhanced pointer network blade sorting optimization model in this paper to sort a set of blade sequences, the unbalanced value of the rotor after sorting is 14.78 g.mm, which is 84.8% better than the genetic algorithm, and the search speed is increased by 95.9%. The results show that the method can quickly and accurately give the arrangement order of the leaves, and the proposed model has generalization. It can provide a reliable measurement method for rotor assembly measurement of large engine manufacturing enterprises such as China Aero-Engine Company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助默默紊采纳,获得10
刚刚
烟花应助不易采纳,获得10
刚刚
st发布了新的文献求助10
刚刚
斯文败类应助Liu920302采纳,获得10
1秒前
霸气映之完成签到,获得积分10
1秒前
陈隐隐约约完成签到,获得积分10
1秒前
1秒前
guoduan完成签到,获得积分10
2秒前
2秒前
222发布了新的文献求助10
2秒前
李特冷发布了新的文献求助10
2秒前
黄绪林发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
灯箱发布了新的文献求助10
4秒前
5秒前
科目三应助研雾采纳,获得10
5秒前
疯子完成签到,获得积分10
5秒前
5秒前
5秒前
上弦月发布了新的文献求助10
6秒前
Hilda007发布了新的文献求助10
7秒前
7秒前
烟花应助英俊乌龟采纳,获得10
7秒前
孤独静枫发布了新的文献求助10
7秒前
Young应助晞嘻采纳,获得10
8秒前
Sylvia发布了新的文献求助10
8秒前
8秒前
时安完成签到,获得积分10
9秒前
9秒前
沧沧发布了新的文献求助10
9秒前
李健应助小文采纳,获得30
9秒前
可爱的函函应助Dr.c采纳,获得10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614862
求助须知:如何正确求助?哪些是违规求助? 4699807
关于积分的说明 14905197
捐赠科研通 4740557
什么是DOI,文献DOI怎么找? 2547802
邀请新用户注册赠送积分活动 1511593
关于科研通互助平台的介绍 1473715