Handling Imbalanced Data for Improved Classification Performance: Methods and Challenges

过采样 机器学习 过度拟合 计算机科学 人工智能 班级(哲学) 集成学习 Boosting(机器学习) 重采样 背景(考古学) 领域(数学) 二元分类 数据挖掘 支持向量机 人工神经网络 数学 计算机网络 古生物学 带宽(计算) 纯数学 生物
作者
Somiya Abokadr,Azreen Azman,Hazlina Hamdan,N. Nurul Amelina
标识
DOI:10.1109/esmarta59349.2023.10293442
摘要

Imbalanced data significantly impacts the efficacy of machine learning models. In cases where one class greatly outweighs the other in terms of sample count, models might develop a bias towards the majority class, thereby undermining the performance of the minority class. Imbalanced data act to increase the risk of overfitting, as the model may memorize the majority of class samples instead of learning underlying patterns. This paper addresses these challenges in the classification field by exploring various solutions, including under-sampling, oversampling, SMOTE, cost-sensitive learning, and ensemble deep learning methods. The evaluate the performance of these methods on different datasets and provide insights into their strengths and limitations. The paper presents a taxonomy of strategies for imbalanced binary and multi-class classification problems, including resampling, algorithmic, and hybrid methods. Ultimately, the paper furnishes guidelines to facilitate the selection of the most pertinent method for mitigating imbalanced data challenges within a specific classification context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南念发布了新的文献求助10
刚刚
Jasper应助科学家采纳,获得10
1秒前
July发布了新的文献求助100
1秒前
guo发布了新的文献求助10
2秒前
yjq发布了新的文献求助10
2秒前
2秒前
儒雅的菠萝完成签到 ,获得积分10
2秒前
study发布了新的文献求助10
2秒前
ding应助foxp3采纳,获得10
2秒前
2秒前
小璐sunny发布了新的文献求助10
2秒前
彭于晏应助HLWW采纳,获得10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
oceandad完成签到,获得积分10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
prosperp应助科研通管家采纳,获得10
4秒前
隐形曼青应助淡然的香薇采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
5秒前
不将就1345应助科研通管家采纳,获得30
5秒前
失眠双双应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
隐形曼青应助xiangdan采纳,获得10
6秒前
大力雨柏发布了新的文献求助10
7秒前
7秒前
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236