Global predictions of topsoil organic carbon stocks under changing climate in the 21st century

表土 环境科学 气候变化 土壤碳 全球变化 全球变暖 碳循环 土壤科学 生态系统 土壤水分 生态学 地质学 海洋学 生物
作者
Bo Chen,Qikai Lu,Lifei Wei,Wen-Qiang Fu,Zeyang Wei,Shuang Tian
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:908: 168448-168448 被引量:5
标识
DOI:10.1016/j.scitotenv.2023.168448
摘要

The organic carbon (OC) stored in global topsoil (0–30 cm) will be the most active participant in the carbon cycle under future climate change. Due to differences in focus regions or research methods, the spatio-temporal changes of future global topsoil OC stocks and how they will be affected by climate change are not systematically understood, which needs to be further explored. In this study, we developed data-driven models to predict the spatio-temporal dynamics of global topsoil OC stocks by combining 32,579 soil profiles with environmental variables and comprehensively explored the impact of future climate change on topsoil OC. It was found that the topsoil OC stocks were 1249.29 Pg in the baseline period (1971–1990). By 2100, under the normal and high representative concentration paths, it is predicted that the global topsoil OC stocks will decrease by 113.67 ± 25.93 Pg and 193.71 ± 39.76 Pg, respectively. In the future, the largest global topsoil carbon loss will occur in boreal forest areas, which are expected to lose 17.03–27.90 % (66.01–108.13Pg) of their carbon stocks. The influence of climate on topsoil OC stocks is mainly manifested in temperature, which has a negative influence on the global topsoil OC stock, and the contribution rate of temperature to the effect on the global topsoil OC stock is about 26.96 %. Overall, our results provide a high spatio-temporal resolution assessment of global topsoil OC stocks and their relationship to environmental factors, and highlight the spatial heterogeneity, which has been generally ignored in many experimental frameworks and prediction models. These results will help governments to make appropriate management decisions to mitigate climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
谷子发布了新的文献求助10
4秒前
希望天下0贩的0应助47采纳,获得30
4秒前
4秒前
5秒前
bkagyin应助hhhhhh采纳,获得10
6秒前
小蘑菇应助小汪采纳,获得10
6秒前
fancynancy应助hsialy采纳,获得20
6秒前
Orange应助青鸾采纳,获得10
7秒前
7秒前
所所应助QYG采纳,获得10
8秒前
Nuyoah完成签到,获得积分20
9秒前
小四发布了新的文献求助10
9秒前
在水一方应助cc采纳,获得10
10秒前
大漂亮完成签到 ,获得积分10
10秒前
wangliang0329发布了新的文献求助10
10秒前
YuhanZhi关注了科研通微信公众号
11秒前
47完成签到,获得积分10
11秒前
QW发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
小汪完成签到,获得积分10
14秒前
lc完成签到,获得积分10
15秒前
YZF发布了新的文献求助10
16秒前
samskaras发布了新的文献求助10
16秒前
ding应助兰无采纳,获得10
16秒前
weber发布了新的文献求助10
17秒前
nana完成签到,获得积分10
18秒前
王维发布了新的文献求助10
18秒前
可靠巧荷完成签到,获得积分20
19秒前
伶俐芙发布了新的文献求助10
19秒前
小四完成签到,获得积分10
20秒前
20秒前
heher完成签到 ,获得积分10
21秒前
我是老大应助fjh采纳,获得10
21秒前
HHHZZZ完成签到,获得积分10
21秒前
万能图书馆应助tw007007采纳,获得10
22秒前
可靠巧荷发布了新的文献求助10
23秒前
慕青应助胡杨采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959564
求助须知:如何正确求助?哪些是违规求助? 3505819
关于积分的说明 11126349
捐赠科研通 3237712
什么是DOI,文献DOI怎么找? 1789318
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802951