Manipulating the Charge Carriers Through Functionally Bridged Components Advances Low‐Cost Organic Solar Cells with Green Solvent Processing

材料科学 三元运算 极化子 有机太阳能电池 载流子 纳米技术 接受者 能量转换效率 光电子学 化学物理 电子 聚合物 计算机科学 化学 物理 量子力学 复合材料 程序设计语言 凝聚态物理
作者
Top Archie Dela Peña,Ruijie Ma,Yongmin Luo,Zengshan Xing,Qi Wei,Yu‐Long Hai,Yao Li,S. Garcia,King Lun Yeung,Tao Jia,Kam Sing Wong,He Yan,Gang Li,Mingjie Li,Jiaying Wu
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (1) 被引量:7
标识
DOI:10.1002/aenm.202303169
摘要

Abstract Organic solar cell (OSC) development continues to demonstrate impressive device efficiency improvements. However, the materials synthetic simplicity essential to industrialization remains seriously lacking attention, imparting inferior performance records in low‐cost devices. Hence, low bandgap and completely non‐fused electron acceptors (CNFEAs) having simple molecular structures are investigated herein. In contrast to typically explored fused‐ring acceptors with smaller backbone conformational variations, minimizing the interface recombination sites through a greater extent of localized domains is identified as more critical in CNFEAs, leading to remarkable fill factors ( FF s) approaching 75%, among the highest currently realized for low‐cost systems. However, this comes with diminishing charge generation efficiency. The general ternary blend optimization strategy modifying the morphology of host components is limited in preserving such remarkably high FF s. To suppress the trade‐off while keeping notable FF s, a new perspective of constructing functionally bridged components based on optical, electronic, and thermodynamic properties is introduced here. Specifically, charge generation is unrestrained from the host acceptor localized domains through the introduction of a “bridge” component while also taking advantage of the configuration to channel polarons toward the efficient transport moieties of the host components. Accordingly, this work incubates understanding‐guided optimizations toward the advancement of more practical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇少爱学习哟完成签到,获得积分10
刚刚
刚刚
Amber应助曹梦梦采纳,获得10
刚刚
科研通AI5应助平淡南霜采纳,获得10
1秒前
小刘不笨发布了新的文献求助10
1秒前
1秒前
GWM发布了新的文献求助30
1秒前
MADKAI发布了新的文献求助10
1秒前
novia完成签到,获得积分10
1秒前
东郭南松发布了新的文献求助10
2秒前
经法发布了新的文献求助10
2秒前
韭菜盒子发布了新的文献求助10
2秒前
donk完成签到 ,获得积分10
3秒前
传奇3应助lx采纳,获得10
3秒前
4秒前
华仔应助bluer采纳,获得10
4秒前
poo1900完成签到,获得积分10
4秒前
ssx完成签到,获得积分10
4秒前
4秒前
xuanxuan完成签到,获得积分10
4秒前
CyrusSo524完成签到,获得积分10
4秒前
4秒前
格格星完成签到,获得积分10
5秒前
jackish完成签到,获得积分10
5秒前
5秒前
5秒前
英姑应助温柔若采纳,获得10
5秒前
6秒前
熠熠完成签到,获得积分10
8秒前
wangping发布了新的文献求助10
8秒前
李爱国应助小豆芽儿采纳,获得10
8秒前
9秒前
9秒前
FFF完成签到,获得积分20
10秒前
学术小黄完成签到,获得积分10
10秒前
么系么系发布了新的文献求助10
10秒前
11秒前
小洪俊熙完成签到,获得积分10
12秒前
123完成签到,获得积分10
12秒前
SYLH应助di采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678