Language Guided Graph Transformer for Skeleton Action Recognition

计算机科学 人工智能 变压器 自然语言处理 图形 动作识别 模式识别(心理学) 机器学习 理论计算机科学 工程类 电压 电气工程 班级(哲学)
作者
Libo Weng,Weidong Lou,Fei Gao
出处
期刊:Communications in computer and information science 卷期号:: 283-299
标识
DOI:10.1007/978-981-99-8141-0_22
摘要

The Transformer model is a novel neural network architecture based on a self-attention mechanism, primarily used in the field of natural language processing and is currently being introduced to the computer vision domain. However, the Transformer model has not been widely applied in the task of human action recognition. Action recognition is typically described as a single classification task, and the existing recognition algorithms do not fully leverage the semantic relationships within actions. In this paper, a new method named Language Guided Graph Transformer (LGGT) for Skeleton Action Recognition is proposed. The LGGT method combines textual information and Graph Transformer to incorporate semantic guidance in skeleton-based action recognition. Specifically, it employs Graph Transformer as the encoder for skeleton data to extract feature representations and effectively captures long-distance dependencies between joints. Additionally, LGGT utilizes a large-scale language model as a knowledge engine to generate textual descriptions specific to different actions, capturing the semantic relationships between actions and improving the model’s understanding and accurate recognition and classification of different actions. We extensively evaluate the performance of using the proposed method for action recognition on the Smoking dataset, Kinetics-Skeleton dataset, and NTU RGB $$+$$ D action dataset. The experimental results demonstrate significant performance improvements of our method on these datasets, and the ablation study shows that the introduction of semantic guidance can further enhance the model’s performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶飞荷发布了新的文献求助10
1秒前
1秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
1秒前
1秒前
123456完成签到 ,获得积分10
2秒前
2秒前
3秒前
乐乐乐乐乐完成签到,获得积分10
3秒前
Q.curiosity完成签到,获得积分10
4秒前
丘比特应助我行我素采纳,获得10
4秒前
ClaudiaCY完成签到,获得积分10
4秒前
4秒前
科研天才完成签到,获得积分10
5秒前
GHOST发布了新的文献求助10
5秒前
5秒前
6秒前
谢家宝树发布了新的文献求助10
6秒前
HEIKU应助Ying采纳,获得10
7秒前
Zzz完成签到,获得积分10
7秒前
LC发布了新的文献求助20
7秒前
刘怀蕊完成签到,获得积分10
8秒前
8秒前
LLL发布了新的文献求助10
8秒前
跳跃乘风完成签到,获得积分10
9秒前
Anxinxin完成签到,获得积分10
9秒前
阳佟冬卉完成签到,获得积分10
10秒前
Silence发布了新的文献求助10
10秒前
10秒前
通通通发布了新的文献求助10
11秒前
帅气的秘密完成签到 ,获得积分10
11秒前
领导范儿应助马建国采纳,获得10
11秒前
lysixsixsix完成签到,获得积分10
11秒前
12秒前
jia完成签到,获得积分10
12秒前
欣喜乐天发布了新的文献求助10
12秒前
Kiyotaka完成签到,获得积分10
12秒前
13秒前
季夏发布了新的文献求助10
13秒前
Tingshan发布了新的文献求助20
14秒前
背后的诺言完成签到 ,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762