Language Guided Graph Transformer for Skeleton Action Recognition

计算机科学 人工智能 变压器 自然语言处理 图形 动作识别 模式识别(心理学) 机器学习 理论计算机科学 工程类 电气工程 电压 班级(哲学)
作者
Libo Weng,Weidong Lou,Fei Gao
出处
期刊:Communications in computer and information science 卷期号:: 283-299
标识
DOI:10.1007/978-981-99-8141-0_22
摘要

The Transformer model is a novel neural network architecture based on a self-attention mechanism, primarily used in the field of natural language processing and is currently being introduced to the computer vision domain. However, the Transformer model has not been widely applied in the task of human action recognition. Action recognition is typically described as a single classification task, and the existing recognition algorithms do not fully leverage the semantic relationships within actions. In this paper, a new method named Language Guided Graph Transformer (LGGT) for Skeleton Action Recognition is proposed. The LGGT method combines textual information and Graph Transformer to incorporate semantic guidance in skeleton-based action recognition. Specifically, it employs Graph Transformer as the encoder for skeleton data to extract feature representations and effectively captures long-distance dependencies between joints. Additionally, LGGT utilizes a large-scale language model as a knowledge engine to generate textual descriptions specific to different actions, capturing the semantic relationships between actions and improving the model’s understanding and accurate recognition and classification of different actions. We extensively evaluate the performance of using the proposed method for action recognition on the Smoking dataset, Kinetics-Skeleton dataset, and NTU RGB $$+$$ D action dataset. The experimental results demonstrate significant performance improvements of our method on these datasets, and the ablation study shows that the introduction of semantic guidance can further enhance the model’s performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hyjcnhyj完成签到,获得积分10
1秒前
俊逸依丝完成签到,获得积分10
3秒前
YY发布了新的文献求助30
4秒前
欣喜灯泡完成签到,获得积分10
5秒前
LG发布了新的文献求助10
5秒前
大个应助科研通管家采纳,获得10
5秒前
yuqi应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
从容芮应助科研通管家采纳,获得30
6秒前
从容芮应助科研通管家采纳,获得30
6秒前
英姑应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
从容芮应助科研通管家采纳,获得30
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
小郑在学习完成签到,获得积分10
8秒前
10秒前
yuhangli发布了新的文献求助10
11秒前
wwuu完成签到,获得积分10
12秒前
14秒前
鱼与木头发布了新的文献求助10
14秒前
风中钥匙完成签到,获得积分10
15秒前
Theprisoners举报澈竹影求助涉嫌违规
15秒前
小小怪发布了新的文献求助10
15秒前
鲜榨花生油完成签到,获得积分10
15秒前
wwuu发布了新的文献求助10
16秒前
英俊的铭应助LG采纳,获得10
17秒前
19秒前
22秒前
shinysparrow应助风中钥匙采纳,获得100
23秒前
合适背包发布了新的文献求助10
24秒前
25秒前
酷波er应助雪上一枝蒿采纳,获得10
25秒前
27秒前
符小俊完成签到,获得积分10
29秒前
典雅储发布了新的文献求助30
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724