Language Guided Graph Transformer for Skeleton Action Recognition

计算机科学 人工智能 变压器 自然语言处理 图形 动作识别 模式识别(心理学) 机器学习 理论计算机科学 工程类 电气工程 电压 班级(哲学)
作者
Libo Weng,Weidong Lou,Fei Gao
出处
期刊:Communications in computer and information science 卷期号:: 283-299
标识
DOI:10.1007/978-981-99-8141-0_22
摘要

The Transformer model is a novel neural network architecture based on a self-attention mechanism, primarily used in the field of natural language processing and is currently being introduced to the computer vision domain. However, the Transformer model has not been widely applied in the task of human action recognition. Action recognition is typically described as a single classification task, and the existing recognition algorithms do not fully leverage the semantic relationships within actions. In this paper, a new method named Language Guided Graph Transformer (LGGT) for Skeleton Action Recognition is proposed. The LGGT method combines textual information and Graph Transformer to incorporate semantic guidance in skeleton-based action recognition. Specifically, it employs Graph Transformer as the encoder for skeleton data to extract feature representations and effectively captures long-distance dependencies between joints. Additionally, LGGT utilizes a large-scale language model as a knowledge engine to generate textual descriptions specific to different actions, capturing the semantic relationships between actions and improving the model’s understanding and accurate recognition and classification of different actions. We extensively evaluate the performance of using the proposed method for action recognition on the Smoking dataset, Kinetics-Skeleton dataset, and NTU RGB $$+$$ D action dataset. The experimental results demonstrate significant performance improvements of our method on these datasets, and the ablation study shows that the introduction of semantic guidance can further enhance the model’s performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助nina采纳,获得10
1秒前
hatoyama发布了新的文献求助10
2秒前
2秒前
bkagyin应助路路采纳,获得10
2秒前
2秒前
3秒前
dawn完成签到 ,获得积分10
3秒前
Arlo完成签到 ,获得积分10
3秒前
5秒前
natsu发布了新的文献求助10
5秒前
真理完成签到,获得积分10
5秒前
婷婷应助一支小麻麻采纳,获得10
6秒前
7秒前
积极书双发布了新的文献求助10
7秒前
ZSL完成签到,获得积分10
7秒前
baiyixuan完成签到,获得积分10
9秒前
bkagyin应助暴躁的板栗采纳,获得10
10秒前
11秒前
13秒前
柒号完成签到,获得积分10
13秒前
优秀如雪发布了新的文献求助10
13秒前
15秒前
pdc完成签到,获得积分10
16秒前
SciGPT应助Amber采纳,获得10
18秒前
nimonimo发布了新的文献求助10
18秒前
19秒前
路路发布了新的文献求助10
20秒前
风趣的烨磊完成签到,获得积分10
21秒前
奕奕完成签到,获得积分10
22秒前
程迦完成签到,获得积分10
23秒前
24秒前
24秒前
小豪娃完成签到,获得积分20
26秒前
27秒前
温暖的冰凡关注了科研通微信公众号
27秒前
英姑应助maomao采纳,获得10
29秒前
29秒前
优秀如雪完成签到,获得积分10
29秒前
30秒前
小布可嘁发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164013
求助须知:如何正确求助?哪些是违规求助? 2814801
关于积分的说明 7906532
捐赠科研通 2474357
什么是DOI,文献DOI怎么找? 1317472
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198