Language Guided Graph Transformer for Skeleton Action Recognition

计算机科学 人工智能 变压器 自然语言处理 图形 动作识别 模式识别(心理学) 机器学习 理论计算机科学 工程类 电气工程 电压 班级(哲学)
作者
Libo Weng,Weidong Lou,Fei Gao
出处
期刊:Communications in computer and information science 卷期号:: 283-299
标识
DOI:10.1007/978-981-99-8141-0_22
摘要

The Transformer model is a novel neural network architecture based on a self-attention mechanism, primarily used in the field of natural language processing and is currently being introduced to the computer vision domain. However, the Transformer model has not been widely applied in the task of human action recognition. Action recognition is typically described as a single classification task, and the existing recognition algorithms do not fully leverage the semantic relationships within actions. In this paper, a new method named Language Guided Graph Transformer (LGGT) for Skeleton Action Recognition is proposed. The LGGT method combines textual information and Graph Transformer to incorporate semantic guidance in skeleton-based action recognition. Specifically, it employs Graph Transformer as the encoder for skeleton data to extract feature representations and effectively captures long-distance dependencies between joints. Additionally, LGGT utilizes a large-scale language model as a knowledge engine to generate textual descriptions specific to different actions, capturing the semantic relationships between actions and improving the model’s understanding and accurate recognition and classification of different actions. We extensively evaluate the performance of using the proposed method for action recognition on the Smoking dataset, Kinetics-Skeleton dataset, and NTU RGB $$+$$ D action dataset. The experimental results demonstrate significant performance improvements of our method on these datasets, and the ablation study shows that the introduction of semantic guidance can further enhance the model’s performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实旭尧完成签到 ,获得积分10
刚刚
刚刚
freebird应助温柔采纳,获得10
刚刚
nihaoxiaoai发布了新的文献求助10
刚刚
刚刚
刚刚
24813016发布了新的文献求助10
刚刚
1秒前
嗯哼发布了新的文献求助10
1秒前
shanjianjie发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助10
1秒前
朱浩泽完成签到,获得积分10
2秒前
qq大魔王发布了新的文献求助50
2秒前
柏拉图发布了新的文献求助10
2秒前
2秒前
3秒前
nekobeing发布了新的文献求助50
3秒前
LJR完成签到,获得积分20
4秒前
4秒前
Mathilda完成签到,获得积分10
4秒前
5秒前
7秒前
缥缈尔丝发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Demon发布了新的文献求助10
7秒前
嘿嘿完成签到,获得积分10
7秒前
雨醉东风发布了新的文献求助10
7秒前
8秒前
共享精神应助山东及时雨采纳,获得10
8秒前
斯文败类应助嗯哼采纳,获得10
8秒前
8秒前
8秒前
糖豆发布了新的文献求助10
8秒前
莱茵河完成签到 ,获得积分10
9秒前
cucu完成签到,获得积分20
9秒前
9秒前
SID发布了新的文献求助10
9秒前
健忘鞋垫完成签到,获得积分10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619809
求助须知:如何正确求助?哪些是违规求助? 4704349
关于积分的说明 14927602
捐赠科研通 4760460
什么是DOI,文献DOI怎么找? 2550657
邀请新用户注册赠送积分活动 1513453
关于科研通互助平台的介绍 1474498