亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A pancreatic cancer risk prediction model (Prism) developed and validated on large-scale US clinical data

胰腺癌 比例(比率) 癌症 计算机科学 医学 数据科学 内科学 地理 地图学
作者
Kai Jia,Steven Kundrot,Matvey B. Palchuk,Jeff Warnick,Kathryn Haapala,Irving Kaplan,Martin Rinard,Limor Appelbaum
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:98: 104888-104888 被引量:7
标识
DOI:10.1016/j.ebiom.2023.104888
摘要

BackgroundPancreatic Duct Adenocarcinoma (PDAC) screening can enable early-stage disease detection and long-term survival. Current guidelines use inherited predisposition, with about 10% of PDAC cases eligible for screening. Using Electronic Health Record (EHR) data from a multi-institutional federated network, we developed and validated a PDAC RISk Model (Prism) for the general US population to extend early PDAC detection.MethodsNeural Network (PrismNN) and Logistic Regression (PrismLR) were developed using EHR data from 55 US Health Care Organisations (HCOs) to predict PDAC risk 6–18 months before diagnosis for patients 40 years or older. Model performance was assessed using Area Under the Curve (AUC) and calibration plots. Models were internal-externally validated by geographic location, race, and time. Simulated model deployment evaluated Standardised Incidence Ratio (SIR) and other metrics.FindingsWith 35,387 PDAC cases, 1,500,081 controls, and 87 features per patient, PrismNN obtained a test AUC of 0.826 (95% CI: 0.824–0.828) (PrismLR: 0.800 (95% CI: 0.798–0.802)). PrismNN's average internal-external validation AUCs were 0.740 for locations, 0.828 for races, and 0.789 (95% CI: 0.762–0.816) for time. At SIR = 5.10 (exceeding the current screening inclusion threshold) in simulated model deployment, PrismNN sensitivity was 35.9% (specificity 95.3%).InterpretationPrism models demonstrated good accuracy and generalizability across diverse populations. PrismNN could find 3.5 times more cases at comparable risk than current screening guidelines. The small number of features provided a basis for model interpretation. Integration with the federated network provided data from a large, heterogeneous patient population and a pathway to future clinical deployment.FundingPrevent Cancer Foundation, TriNetX, Boeing, DARPA, NSF, and Aarno Labs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
笨笨完成签到,获得积分10
9秒前
21秒前
24秒前
思源应助嘿嘿嘿侦探社采纳,获得10
34秒前
47秒前
53秒前
1分钟前
gyh发布了新的文献求助10
1分钟前
孤独的涵柳完成签到 ,获得积分10
1分钟前
1分钟前
gyh完成签到,获得积分20
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
搜集达人应助喜欢对你笑采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
老石完成签到 ,获得积分10
5分钟前
5分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
彭于晏应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
火星上向珊完成签到,获得积分10
6分钟前
6分钟前
wdxx发布了新的文献求助30
6分钟前
liufan完成签到 ,获得积分10
7分钟前
lmplzzp完成签到,获得积分10
7分钟前
橙子味的邱憨憨完成签到 ,获得积分10
7分钟前
杪夏二八完成签到 ,获得积分10
7分钟前
wdxx完成签到,获得积分10
7分钟前
649981108发布了新的文献求助10
8分钟前
8分钟前
649981108完成签到,获得积分10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167214
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638