A pancreatic cancer risk prediction model (Prism) developed and validated on large-scale US clinical data

胰腺癌 比例(比率) 癌症 计算机科学 医学 数据科学 内科学 地理 地图学
作者
Kai Jia,Steven Kundrot,Matvey B. Palchuk,Jeff Warnick,Kathryn Haapala,Irving Kaplan,Martin Rinard,Limor Appelbaum
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:98: 104888-104888 被引量:7
标识
DOI:10.1016/j.ebiom.2023.104888
摘要

BackgroundPancreatic Duct Adenocarcinoma (PDAC) screening can enable early-stage disease detection and long-term survival. Current guidelines use inherited predisposition, with about 10% of PDAC cases eligible for screening. Using Electronic Health Record (EHR) data from a multi-institutional federated network, we developed and validated a PDAC RISk Model (Prism) for the general US population to extend early PDAC detection.MethodsNeural Network (PrismNN) and Logistic Regression (PrismLR) were developed using EHR data from 55 US Health Care Organisations (HCOs) to predict PDAC risk 6–18 months before diagnosis for patients 40 years or older. Model performance was assessed using Area Under the Curve (AUC) and calibration plots. Models were internal-externally validated by geographic location, race, and time. Simulated model deployment evaluated Standardised Incidence Ratio (SIR) and other metrics.FindingsWith 35,387 PDAC cases, 1,500,081 controls, and 87 features per patient, PrismNN obtained a test AUC of 0.826 (95% CI: 0.824–0.828) (PrismLR: 0.800 (95% CI: 0.798–0.802)). PrismNN's average internal-external validation AUCs were 0.740 for locations, 0.828 for races, and 0.789 (95% CI: 0.762–0.816) for time. At SIR = 5.10 (exceeding the current screening inclusion threshold) in simulated model deployment, PrismNN sensitivity was 35.9% (specificity 95.3%).InterpretationPrism models demonstrated good accuracy and generalizability across diverse populations. PrismNN could find 3.5 times more cases at comparable risk than current screening guidelines. The small number of features provided a basis for model interpretation. Integration with the federated network provided data from a large, heterogeneous patient population and a pathway to future clinical deployment.FundingPrevent Cancer Foundation, TriNetX, Boeing, DARPA, NSF, and Aarno Labs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻沅完成签到,获得积分20
2秒前
彭于晏应助唠叨的凉面采纳,获得10
2秒前
阿拉斯加碰上哈士奇完成签到,获得积分10
3秒前
4秒前
无误发布了新的文献求助10
5秒前
6秒前
火星上小土豆完成签到 ,获得积分10
6秒前
十月完成签到,获得积分10
6秒前
子凡应助小泰勒横着走采纳,获得10
7秒前
sutu完成签到,获得积分10
8秒前
Xiang发布了新的文献求助10
11秒前
著名番茄完成签到,获得积分10
11秒前
Pluto完成签到,获得积分10
11秒前
12秒前
16秒前
科研通AI5应助蔡继海采纳,获得10
17秒前
浅陌亦汐发布了新的文献求助10
17秒前
完美世界应助Can采纳,获得10
18秒前
英俊的文龙完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
21秒前
鱼小呵完成签到,获得积分10
21秒前
李健应助郭晓峰采纳,获得10
22秒前
BAEssss发布了新的文献求助10
23秒前
23秒前
CodeCraft应助壮观的访枫采纳,获得10
23秒前
24秒前
唠叨的凉面完成签到,获得积分10
25秒前
格瑞格完成签到,获得积分10
25秒前
魔芋完成签到,获得积分10
26秒前
27秒前
cai完成签到,获得积分10
27秒前
27秒前
科研小谢完成签到,获得积分10
28秒前
28秒前
田様应助taoyiyan采纳,获得10
28秒前
29秒前
Judy完成签到 ,获得积分0
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
Andrew Duncan Senior: Physician of the Enlightenment 240
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3688987
求助须知:如何正确求助?哪些是违规求助? 3238607
关于积分的说明 9836193
捐赠科研通 2950660
什么是DOI,文献DOI怎么找? 1618094
邀请新用户注册赠送积分活动 764839
科研通“疑难数据库(出版商)”最低求助积分说明 738889