A pancreatic cancer risk prediction model (Prism) developed and validated on large-scale US clinical data

胰腺癌 比例(比率) 癌症 计算机科学 医学 数据科学 内科学 地理 地图学
作者
Kai Jia,Steven Kundrot,Matvey B. Palchuk,Jeff Warnick,Kathryn Haapala,Irving Kaplan,Martin Rinard,Limor Appelbaum
出处
期刊:EBioMedicine [Elsevier]
卷期号:98: 104888-104888 被引量:7
标识
DOI:10.1016/j.ebiom.2023.104888
摘要

BackgroundPancreatic Duct Adenocarcinoma (PDAC) screening can enable early-stage disease detection and long-term survival. Current guidelines use inherited predisposition, with about 10% of PDAC cases eligible for screening. Using Electronic Health Record (EHR) data from a multi-institutional federated network, we developed and validated a PDAC RISk Model (Prism) for the general US population to extend early PDAC detection.MethodsNeural Network (PrismNN) and Logistic Regression (PrismLR) were developed using EHR data from 55 US Health Care Organisations (HCOs) to predict PDAC risk 6–18 months before diagnosis for patients 40 years or older. Model performance was assessed using Area Under the Curve (AUC) and calibration plots. Models were internal-externally validated by geographic location, race, and time. Simulated model deployment evaluated Standardised Incidence Ratio (SIR) and other metrics.FindingsWith 35,387 PDAC cases, 1,500,081 controls, and 87 features per patient, PrismNN obtained a test AUC of 0.826 (95% CI: 0.824–0.828) (PrismLR: 0.800 (95% CI: 0.798–0.802)). PrismNN's average internal-external validation AUCs were 0.740 for locations, 0.828 for races, and 0.789 (95% CI: 0.762–0.816) for time. At SIR = 5.10 (exceeding the current screening inclusion threshold) in simulated model deployment, PrismNN sensitivity was 35.9% (specificity 95.3%).InterpretationPrism models demonstrated good accuracy and generalizability across diverse populations. PrismNN could find 3.5 times more cases at comparable risk than current screening guidelines. The small number of features provided a basis for model interpretation. Integration with the federated network provided data from a large, heterogeneous patient population and a pathway to future clinical deployment.FundingPrevent Cancer Foundation, TriNetX, Boeing, DARPA, NSF, and Aarno Labs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助陈大浩浩采纳,获得10
1秒前
123完成签到,获得积分10
2秒前
zzk完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
xinyuli发布了新的文献求助10
4秒前
铭名洺完成签到 ,获得积分10
5秒前
5秒前
在水一方应助我的阳光采纳,获得10
6秒前
zmm完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
热情笑卉完成签到,获得积分10
8秒前
晨风发布了新的文献求助10
8秒前
暴躁的太阳完成签到,获得积分10
9秒前
tigger发布了新的文献求助10
9秒前
wzx发布了新的文献求助20
9秒前
9秒前
王志鹏完成签到 ,获得积分10
10秒前
xss发布了新的文献求助10
10秒前
李爱国应助sunstar采纳,获得10
11秒前
文艺代灵完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
DUAN完成签到,获得积分10
12秒前
科研小蔡发布了新的文献求助10
13秒前
田di完成签到 ,获得积分10
13秒前
14秒前
科研通AI6应助雷培采纳,获得10
15秒前
15秒前
actor2006发布了新的文献求助100
15秒前
15秒前
15秒前
15秒前
无花果应助FFFF采纳,获得30
15秒前
tantan完成签到,获得积分10
16秒前
踏实采波完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142