A pancreatic cancer risk prediction model (Prism) developed and validated on large-scale US clinical data

胰腺癌 比例(比率) 癌症 计算机科学 医学 数据科学 内科学 地理 地图学
作者
Kai Jia,Steven Kundrot,Matvey B. Palchuk,Jeff Warnick,Kathryn Haapala,Irving Kaplan,Martin Rinard,Limor Appelbaum
出处
期刊:EBioMedicine [Elsevier]
卷期号:98: 104888-104888 被引量:7
标识
DOI:10.1016/j.ebiom.2023.104888
摘要

BackgroundPancreatic Duct Adenocarcinoma (PDAC) screening can enable early-stage disease detection and long-term survival. Current guidelines use inherited predisposition, with about 10% of PDAC cases eligible for screening. Using Electronic Health Record (EHR) data from a multi-institutional federated network, we developed and validated a PDAC RISk Model (Prism) for the general US population to extend early PDAC detection.MethodsNeural Network (PrismNN) and Logistic Regression (PrismLR) were developed using EHR data from 55 US Health Care Organisations (HCOs) to predict PDAC risk 6–18 months before diagnosis for patients 40 years or older. Model performance was assessed using Area Under the Curve (AUC) and calibration plots. Models were internal-externally validated by geographic location, race, and time. Simulated model deployment evaluated Standardised Incidence Ratio (SIR) and other metrics.FindingsWith 35,387 PDAC cases, 1,500,081 controls, and 87 features per patient, PrismNN obtained a test AUC of 0.826 (95% CI: 0.824–0.828) (PrismLR: 0.800 (95% CI: 0.798–0.802)). PrismNN's average internal-external validation AUCs were 0.740 for locations, 0.828 for races, and 0.789 (95% CI: 0.762–0.816) for time. At SIR = 5.10 (exceeding the current screening inclusion threshold) in simulated model deployment, PrismNN sensitivity was 35.9% (specificity 95.3%).InterpretationPrism models demonstrated good accuracy and generalizability across diverse populations. PrismNN could find 3.5 times more cases at comparable risk than current screening guidelines. The small number of features provided a basis for model interpretation. Integration with the federated network provided data from a large, heterogeneous patient population and a pathway to future clinical deployment.FundingPrevent Cancer Foundation, TriNetX, Boeing, DARPA, NSF, and Aarno Labs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奋斗不止发布了新的文献求助10
1秒前
3秒前
Jasper应助坚强的荔枝采纳,获得10
3秒前
深情安青应助凤凤采纳,获得10
3秒前
4秒前
哈卷关注了科研通微信公众号
5秒前
7秒前
WangY1263发布了新的文献求助10
9秒前
亿元发布了新的文献求助10
10秒前
黑暗炸鸡完成签到,获得积分10
11秒前
chen发布了新的文献求助30
11秒前
美丽电源完成签到,获得积分10
14秒前
白三烯完成签到 ,获得积分10
15秒前
18秒前
18秒前
SciGPT应助亿元采纳,获得10
19秒前
19秒前
wanci应助chen采纳,获得10
21秒前
25秒前
白潇潇完成签到 ,获得积分10
25秒前
26秒前
mml发布了新的文献求助10
26秒前
小可爱完成签到 ,获得积分10
27秒前
27秒前
28秒前
行者无疆完成签到,获得积分10
28秒前
田様应助栖xx采纳,获得10
28秒前
28秒前
29秒前
YINLANRUI完成签到,获得积分10
29秒前
Cadre完成签到,获得积分10
31秒前
朴素雁凡发布了新的文献求助10
31秒前
凤凤发布了新的文献求助10
31秒前
YINLANRUI发布了新的文献求助10
32秒前
嘀嘀哒哒发布了新的文献求助10
32秒前
33秒前
科研靓仔发布了新的文献求助10
33秒前
踏雪无痕发布了新的文献求助10
34秒前
奋斗不止发布了新的文献求助10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023