A pancreatic cancer risk prediction model (Prism) developed and validated on large-scale US clinical data

胰腺癌 比例(比率) 癌症 计算机科学 医学 数据科学 内科学 地理 地图学
作者
Kai Jia,Steven Kundrot,Matvey B. Palchuk,Jeff Warnick,Kathryn Haapala,Irving Kaplan,Martin Rinard,Limor Appelbaum
出处
期刊:EBioMedicine [Elsevier]
卷期号:98: 104888-104888 被引量:7
标识
DOI:10.1016/j.ebiom.2023.104888
摘要

BackgroundPancreatic Duct Adenocarcinoma (PDAC) screening can enable early-stage disease detection and long-term survival. Current guidelines use inherited predisposition, with about 10% of PDAC cases eligible for screening. Using Electronic Health Record (EHR) data from a multi-institutional federated network, we developed and validated a PDAC RISk Model (Prism) for the general US population to extend early PDAC detection.MethodsNeural Network (PrismNN) and Logistic Regression (PrismLR) were developed using EHR data from 55 US Health Care Organisations (HCOs) to predict PDAC risk 6–18 months before diagnosis for patients 40 years or older. Model performance was assessed using Area Under the Curve (AUC) and calibration plots. Models were internal-externally validated by geographic location, race, and time. Simulated model deployment evaluated Standardised Incidence Ratio (SIR) and other metrics.FindingsWith 35,387 PDAC cases, 1,500,081 controls, and 87 features per patient, PrismNN obtained a test AUC of 0.826 (95% CI: 0.824–0.828) (PrismLR: 0.800 (95% CI: 0.798–0.802)). PrismNN's average internal-external validation AUCs were 0.740 for locations, 0.828 for races, and 0.789 (95% CI: 0.762–0.816) for time. At SIR = 5.10 (exceeding the current screening inclusion threshold) in simulated model deployment, PrismNN sensitivity was 35.9% (specificity 95.3%).InterpretationPrism models demonstrated good accuracy and generalizability across diverse populations. PrismNN could find 3.5 times more cases at comparable risk than current screening guidelines. The small number of features provided a basis for model interpretation. Integration with the federated network provided data from a large, heterogeneous patient population and a pathway to future clinical deployment.FundingPrevent Cancer Foundation, TriNetX, Boeing, DARPA, NSF, and Aarno Labs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨裕农完成签到,获得积分20
刚刚
清风醉完成签到,获得积分10
1秒前
2秒前
苹果发布了新的文献求助10
3秒前
Yuanyuan发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
白菜帮子完成签到,获得积分20
5秒前
7秒前
HOAN应助努力的大羊洁采纳,获得30
8秒前
雨上悲发布了新的文献求助10
8秒前
大个应助痴情的阁采纳,获得10
10秒前
chiweiyoung发布了新的文献求助10
11秒前
情怀应助盆栽采纳,获得10
12秒前
12秒前
大丸子发布了新的文献求助10
12秒前
彭于晏应助自信的采纳,获得10
13秒前
火星上无春完成签到 ,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助30
17秒前
果酱发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
暖心人士完成签到 ,获得积分10
21秒前
22秒前
23秒前
小天才发布了新的文献求助10
23秒前
吱吱吱发布了新的文献求助10
24秒前
25秒前
CodeCraft应助shi采纳,获得10
25秒前
CipherSage应助芋头采纳,获得10
25秒前
26秒前
怕黑的小蘑菇完成签到,获得积分10
27秒前
搜集达人应助keren采纳,获得10
27秒前
善学以致用应助鱼鱼吖采纳,获得10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317