电解质
快离子导体
材料科学
多孔性
锂(药物)
离子电导率
热的
离子键合
热导率
离子
化学工程
热力学
化学
复合材料
电极
物理化学
有机化学
医学
物理
工程类
内分泌学
作者
Thorben Böger,Tim Bernges,Yuheng Li,Pieremanuele Canepa,Wolfgang G. Zeier
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2023-10-10
标识
DOI:10.1021/acsaem.3c01977
摘要
Solid electrolytes and solid-state batteries have gathered attention in recent years as a potential alternative to state-of-the-art lithium-ion batteries, given the promised increased energy density and safety following the replacement of flammable organic electrolytes with solids. While ongoing research focuses mainly on improving the ionic conductivities of solid electrolytes, little is known about the thermal transport properties of this material class. This includes fundamental studies of heat capacities and thermal conductivities, application-oriented investigations of porosity effects, and the modeling of the temperature distribution in solid-state batteries during operation. To expand the understanding of transport in solid electrolytes, in this work, thermal properties of electrolytes in the argyrodite family (Li6PS5X with X = Cl, Br, I, and Li5.5PS4.5Cl1.5) and Li10GeP2S12 as a function of temperature and porosity are reported. It is shown that the thermal conductivities of solid electrolytes are in the range of liquid electrolytes. Utilizing effective medium theory to describe the porosity-dependent results, an empirical predictive model is obtained, and the intrinsic (bulk) thermal conductivities for all electrolytes are extracted. Moreover, the temperature-independent, glass-like thermal conductivities found in all materials suggest that thermal transport in these ionic conductors occurs in a nontextbook fashion.
科研通智能强力驱动
Strongly Powered by AbleSci AI