Attention based adaptive spatial–temporal hypergraph convolutional networks for stock price trend prediction

可解释性 计算机科学 库存(枪支) 数据挖掘 嵌入 图形 计量经济学 机器学习 人工智能 理论计算机科学 数学 机械工程 工程类
作者
Hongyang Su,Xiaolong Wang,Yang Qin,Qingcai Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121899-121899 被引量:10
标识
DOI:10.1016/j.eswa.2023.121899
摘要

Stock price trend prediction is an important and challenging issue, and accurate forecasting will effectively improve investment decisions and contribute to investment returns. Improving prediction accuracy by exploring stock correlations has received much attention in recent studies. However, there are still some issues that have not been fully considered, such as the impact of invalid correlations, low sensitivity to minor price fluctuations and dependence on priors expert information. To solve the above issues, we propose a novel spatial–temporal framework, which has several characteristics: (1) the noise-aware spatial–temporal attention that dynamically filters out invalid associations from traditional spatial attention and combines temporal attention to capture the spatial–temporal patterns of different stock series; (2) the adaptive stock hypergraph generation maps the intrinsic associations of stocks into a trainable dense matrix via adaptive node embedding; (3) the adaptive graph convolution extends the graph convolution operation from static graphs to adaptive hypergraphs for exploring the dynamic correlations. (4) Multiple stacked attention-based adaptive spatial–temporal Blocks form the end-to-end prediction framework, which uses time-aware cascaded convolution to extract fine-grained temporal features. Convincing experimental results on two stock datasets, studies on the performance on various simulation investments and the model interpretability confirm the advantages of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杏仁发布了新的文献求助10
1秒前
Surge完成签到,获得积分10
1秒前
2秒前
小毛发布了新的文献求助30
2秒前
3秒前
6秒前
6秒前
卓儿完成签到,获得积分10
6秒前
杏仁完成签到,获得积分10
7秒前
7秒前
潇湘夜雨发布了新的文献求助10
8秒前
道友且慢完成签到,获得积分10
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
木兰签完成签到,获得积分10
10秒前
Marciu33发布了新的文献求助10
11秒前
ffffffflzx666发布了新的文献求助10
13秒前
13秒前
Ray发布了新的文献求助10
13秒前
归尘发布了新的文献求助10
13秒前
14秒前
完美世界应助0015采纳,获得10
14秒前
Hello应助0015采纳,获得10
14秒前
YZF发布了新的文献求助10
17秒前
肖思林发布了新的文献求助10
17秒前
俭朴夜雪完成签到,获得积分10
20秒前
Huanglj完成签到,获得积分10
21秒前
shan完成签到,获得积分10
24秒前
25秒前
27秒前
Tian完成签到,获得积分10
27秒前
29秒前
xiahaobo完成签到,获得积分10
31秒前
Ascender发布了新的文献求助10
32秒前
revew666完成签到,获得积分10
33秒前
35秒前
35秒前
37秒前
小蘑菇应助yuedingta采纳,获得10
38秒前
动听千风发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019