Machine Learning-Based Integration Develops a Macrophage-Related Index for Predicting Prognosis and Immunotherapy Response in Lung Adenocarcinoma

免疫疗法 列线图 腺癌 医学 肿瘤科 肺癌 内科学 免疫系统 肿瘤微环境 癌症 免疫学
作者
Zuwei Li,Minzhang Guo,Wanli Lin,Peiyuan Huang
出处
期刊:Archives of Medical Research [Elsevier]
卷期号:54 (7): 102897-102897 被引量:11
标识
DOI:10.1016/j.arcmed.2023.102897
摘要

Macrophages play a critical role in tumor immune microenvironment (TIME) formation and cancer progression in lung adenocarcinoma (LUAD). However, few studies have comprehensively and systematically described the characteristics of macrophages in LUAD.This study identified macrophage-related markers with single-cell RNA sequencing data from the GSE189487 dataset. An integrative machine learning-based procedure based on 10 algorithms was developed to construct a macrophage-related index (MRI) in The Cancer Genome Atlas (TCGA), GSE30219, GSE31210, and GSE72094 datasets. Several algorithms were used to evaluate the associations of MRI with TIME and immunotherapy-related biomarkers. The role of MRI in predicting the immunotherapy response was evaluated with the GSE91061 dataset.The optimal MRI constructed by the combination of the Lasso algorithm and plsRCox was an independent risk factor in LUAD and showed a stable and powerful performance in predicting the overall survival rate of patients with LUAD. Those with low MRI scores had a higher TIME score, a higher level of immune cells, a higher immunophenoscore, and a lower Tumor Immune Dysfunction and Exclusion (TIDE) score, indicating a better response to immunotherapy. The IC50 value of common drugs for chemotherapy and target therapy with low MRI scores was higher compared to high MRI scores. Moreover, the survival prediction nomogram, developed from MRI, had good potential for clinical application in predicting the 1-, 3-, and 5-year overall survival rate of LUAD.Our study constructed for the first time a consensus MRI for LUAD with 10 machine learning algorithms. The MRI could be helpful for risk stratification, prognosis, and selection of treatment approach in LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的思萱完成签到,获得积分10
刚刚
小雅完成签到 ,获得积分10
2秒前
NZHMD完成签到,获得积分10
3秒前
QY关闭了QY文献求助
4秒前
4秒前
欢呼的向秋完成签到 ,获得积分10
5秒前
Jimmy_King完成签到,获得积分10
6秒前
Xbro完成签到,获得积分10
6秒前
轻松的雨竹完成签到 ,获得积分10
7秒前
福star高照完成签到,获得积分10
7秒前
Hollen完成签到 ,获得积分10
8秒前
ykiiii完成签到,获得积分10
8秒前
8秒前
Xbro发布了新的文献求助10
8秒前
李雪松完成签到 ,获得积分10
8秒前
9秒前
可耐的葶完成签到,获得积分10
11秒前
张乐发布了新的文献求助10
13秒前
活力雁枫完成签到,获得积分10
13秒前
无尘完成签到 ,获得积分10
15秒前
复杂焱完成签到 ,获得积分10
17秒前
foyefeng完成签到,获得积分10
20秒前
Zzz完成签到,获得积分10
20秒前
21秒前
上官若男应助happiness采纳,获得10
22秒前
Hello应助paobashan采纳,获得10
22秒前
ask完成签到,获得积分10
24秒前
王雪完成签到,获得积分10
24秒前
25秒前
风犬少年完成签到,获得积分10
29秒前
xiaojcom应助拉萨小医生采纳,获得10
34秒前
34秒前
34秒前
拼搏的忆寒完成签到,获得积分10
35秒前
Serena510完成签到 ,获得积分10
36秒前
36秒前
夏沫完成签到,获得积分10
36秒前
缓慢的翅膀完成签到,获得积分10
37秒前
流苏完成签到,获得积分10
37秒前
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162560
求助须知:如何正确求助?哪些是违规求助? 2813411
关于积分的说明 7900327
捐赠科研通 2472992
什么是DOI,文献DOI怎么找? 1316626
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175