阳离子聚合
光敏剂
超分子化学
纳米载体
卟啉
组合化学
单线态氧
前药
光热治疗
材料科学
化学
连接器
纳米颗粒
纳米技术
光化学
有机化学
高分子化学
分子
氧气
生物化学
计算机科学
操作系统
作者
Yongfei Yin,Liping Gao,Penghao Sun,Lingxiu Zeng,Qiu Zhao,Shigui Chen,Jing Liu,Lu Wang
标识
DOI:10.1016/j.actbio.2023.10.019
摘要
Supramolecular organic frameworks (SOFs) have emerged as a promising class of organic porous materials with vast potential as nanocarriers for combination therapy. Here, we successfully construct an anionic flexible supramolecular organic framework (TPP-SOF) by leveraging multiple host-guest interactions. TPP-SOF is fabricated by the hierarchical orthogonal assembly between anionic water-soluble dimacrocyclic host (P5CD), porphyrin photosensitizers (TPP), and ROS-sensitive thioketal linked adamantane dimer (Ada-S-Ada). TPP-SOF exhibits pH-dependent activation of 1O2 production, which further facilitates the cleavage of Ada-S-Ada linker and promotes the disintegration of the framework. Moreover, leveraging electrostatic and hydrophobic interactions, the anionic TPP-SOF serves as an effective platform for loading cationic photosensitizer IR780 and chemotherapeutic prodrug PhenPt(IV), leading to the formation of supramolecular nanoparticles (IR780/Pt@TPP-SOF) for synergistic therapy. The obtained nanoparticles exhibit good stability, efficient generation of 1O2, and photothermal performance. In vitro and in vivo studies indicate that IR780/Pt@TPP-SOF exhibits remarkable synergistic chemo/PDT/PTT effects under 808 and 660 nm light irradiation. This study showcases a deep insight for the development of SOFs and a new approach for delivering cationic drugs and constructing synergistic combination therapy systems. STATEMENT OF SIGNIFICANCE: In this work, a pH/ROS-responsive anionic flexible supramolecular organic framework, TPP-SOF, was innovatively designed by the hierarchical orthogonal assembly, to co-deliver cationic photosensitizer IR780 and prodrug PhenPt(IV) for synergistic cancer therapy. The drug-loaded TPP-SOF is termed IR780/Pt@TPP-SOF, in which the photoactivity of porphyrin within TPP-SOF could be activated under acidic conditions, the 1O2 generated by the photosensitizers could break the thioketal bonds in Ada-S-Ada, leading to the disassembly of the framework and releasing the drugs. This supramolecular drug delivery system displays good biocompatibility and exhibits remarkable synergistic chemo/PDT/PTT effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI