Temporal Knowledge Graph for Food Risk Prediction

可解释性 食品安全 计算机科学 图形 风险评估 数据挖掘 风险分析(工程) 机器学习 业务 医学 计算机安全 病理 理论计算机科学
作者
Yuntao Shi,Kai Zhou,Meng Zhou,Shuqin Li,Weichuan Liu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (5): 2217-2226 被引量:1
标识
DOI:10.1109/tai.2023.3321590
摘要

Accurate prediction of food-safety risk is an effective measure to improve food risk prevention. The complex and continuous characteristics of food safety influence various factors, thus, a food-safety risk prediction model based on a temporal knowledge graph is proposed in this paper. First, a food-safety risk dataset is constructed by collecting food supervision and management sampling data used in daily life from 2018 to 2021 from the State Administration for Market Regulation. The dataset contains five categories: fruits, vegetables, meat, aquatic products, and dairy products. Then, a novel food-safety temporal knowledge graph is designed based on the proposed index system because food-safety data have temporal characteristics. A temporal knowledge graph network is proposed to build a food safety risk prediction model, which comprises historical learning and generation methods. The proposed food-safety temporal knowledge graph can predict the food risk level and types of hazardous substances in a certain period. Finally, the comparative experiments on the food safety dataset constructed in this article showed that the proposed model achieved the accuracy of 86.15%, the Mean Reciprocal Rank (MRR) of 88.64%, and the recall of 85.13%. This demonstrated that the proposed food safety risk prediction method based on temporal knowledge graph networks has higher accuracy and stronger interpretability compared to some existing data prediction methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
racill发布了新的文献求助10
刚刚
遇上就这样吧应助LIME采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
李健的小迷弟应助FFSGF采纳,获得10
3秒前
畅快又夏完成签到,获得积分10
3秒前
4秒前
5秒前
写个锤子完成签到,获得积分10
5秒前
6秒前
希望天下0贩的0应助li采纳,获得10
7秒前
yfy发布了新的文献求助10
8秒前
zhangjw完成签到 ,获得积分10
8秒前
suiyi发布了新的文献求助20
10秒前
含蓄嫣然完成签到,获得积分10
10秒前
11秒前
SCULGJ发布了新的文献求助10
11秒前
ll完成签到,获得积分10
12秒前
15秒前
libra_D完成签到,获得积分10
15秒前
祁曼岚完成签到,获得积分10
15秒前
zzh完成签到,获得积分10
16秒前
莫氓完成签到 ,获得积分10
17秒前
受伤灵薇完成签到,获得积分10
18秒前
22秒前
梧桐应助啦啦啦啦采纳,获得10
24秒前
狮子完成签到,获得积分10
25秒前
26秒前
阿伟关注了科研通微信公众号
27秒前
Lucas应助吉时采纳,获得10
30秒前
SD完成签到,获得积分20
33秒前
发发完成签到 ,获得积分10
33秒前
33秒前
啾啾栖鸟过完成签到,获得积分20
34秒前
alei1203完成签到,获得积分10
35秒前
37秒前
40秒前
王腾飞应助seattle采纳,获得50
43秒前
田様应助飘柔666采纳,获得10
45秒前
易安完成签到,获得积分10
46秒前
曾经荔枝完成签到,获得积分10
46秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499