Temporal Knowledge Graph for Food Risk Prediction

可解释性 食品安全 计算机科学 图形 风险评估 数据挖掘 风险分析(工程) 机器学习 业务 医学 计算机安全 病理 理论计算机科学
作者
Yuntao Shi,Kai Zhou,Meng Zhou,Shuqin Li,Weichuan Liu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (5): 2217-2226 被引量:1
标识
DOI:10.1109/tai.2023.3321590
摘要

Accurate prediction of food-safety risk is an effective measure to improve food risk prevention. The complex and continuous characteristics of food safety influence various factors, thus, a food-safety risk prediction model based on a temporal knowledge graph is proposed in this paper. First, a food-safety risk dataset is constructed by collecting food supervision and management sampling data used in daily life from 2018 to 2021 from the State Administration for Market Regulation. The dataset contains five categories: fruits, vegetables, meat, aquatic products, and dairy products. Then, a novel food-safety temporal knowledge graph is designed based on the proposed index system because food-safety data have temporal characteristics. A temporal knowledge graph network is proposed to build a food safety risk prediction model, which comprises historical learning and generation methods. The proposed food-safety temporal knowledge graph can predict the food risk level and types of hazardous substances in a certain period. Finally, the comparative experiments on the food safety dataset constructed in this article showed that the proposed model achieved the accuracy of 86.15%, the Mean Reciprocal Rank (MRR) of 88.64%, and the recall of 85.13%. This demonstrated that the proposed food safety risk prediction method based on temporal knowledge graph networks has higher accuracy and stronger interpretability compared to some existing data prediction methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助起承转合采纳,获得10
刚刚
1秒前
蛋炒饭不加蛋完成签到,获得积分10
1秒前
酷炫素完成签到,获得积分10
1秒前
阿金发布了新的文献求助10
2秒前
Jasper应助帅气鹭洋采纳,获得10
2秒前
2秒前
明天更好发布了新的文献求助10
2秒前
3秒前
科研通AI5应助小柠檬采纳,获得10
3秒前
YY完成签到,获得积分10
3秒前
4秒前
科研通AI5应助stt采纳,获得10
4秒前
LDM发布了新的文献求助10
4秒前
上官若男应助乐正成危采纳,获得10
5秒前
小二郎应助有魅力傲菡采纳,获得10
5秒前
追寻夜香完成签到,获得积分10
5秒前
青石完成签到,获得积分20
6秒前
6秒前
浩浩大人发布了新的文献求助10
6秒前
白榆发布了新的文献求助10
6秒前
咕噜仔发布了新的文献求助10
7秒前
寒冷书竹发布了新的文献求助10
7秒前
落雨冥完成签到,获得积分10
7秒前
xinchengzhu完成签到,获得积分10
7秒前
7秒前
慕课魔芋完成签到 ,获得积分10
8秒前
8秒前
左丘幼旋1完成签到,获得积分10
8秒前
无奈的胡萝卜完成签到,获得积分10
9秒前
9秒前
科研通AI5应助优雅的琳采纳,获得10
9秒前
机灵的囧完成签到,获得积分10
10秒前
时光完成签到,获得积分10
10秒前
七大洋的风完成签到,获得积分10
10秒前
左丘幼旋1发布了新的文献求助10
11秒前
amumu发布了新的文献求助10
11秒前
三金发布了新的文献求助10
11秒前
13秒前
kingwill应助明天更好采纳,获得20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678