Transition metal-based self-supported anode for electrocatalytic water splitting at a large current density

化学 催化作用 析氧 电催化剂 分解水 制氢 阳极 电解水 过渡金属 电解 电化学 化学工程 无机化学 纳米技术 材料科学 电极 有机化学 电解质 物理化学 光催化 工程类
作者
Zhong Li,Xinglin Zhang,Changjin Ou,Yizhou Zhang,Wenjun Wang,Shengyang Dong,Xiaochen Dong
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:495: 215381-215381 被引量:49
标识
DOI:10.1016/j.ccr.2023.215381
摘要

Hydrogen produced from water electrolysis is a promising alternative to fossil fuels. The oxygen evolution reaction (OER), which occurs at the anode, involves a four-electron transfer process and requires a large potential to overcome the energy barrier. To address this challenge and reduce the cost associated with noble-metal catalysts, transition metal (TM) based catalysts offer a cost-effective solution. Compared to powder catalysts, TM-based catalysts in situ grown on conductive substrates are more suitable for industrial hydrogen production at large current density. Additionally, oxidation reactions with lower thermodynamic potential than OER have been explored as alternatives to reduce power consumption in electrohydrolysis hydrogen production. In this review, we provide an overview of the evaluation criterion, selection of substrate, preparation methods for self-supporting catalysts and their respective advantages and disadvantages. We also discuss the principle of active site selection and various strategies for enhancing the activity of catalysts, including metal doping, heteroatom doping, co-doping of both, heterojunctions, amorphization, compositing with conductive materials, morphology engineering, and creating superhydrophilic and superaerophobic surface. We then examine alternative anode reactions, such as urea oxidation, hydrazine oxidation, glucose oxidation and alcohol oxidation reactions. Finally, we outline the current challenges in the design of electrocatalysts and anodic oxidation reactions and provide an outlook on the future of hydrogen production using TM-based self-supported electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
666完成签到,获得积分20
刚刚
李小伟发布了新的文献求助10
刚刚
研友_VZG7GZ应助xmf采纳,获得10
刚刚
高高远山发布了新的文献求助10
1秒前
华仔应助可爱的凛采纳,获得10
1秒前
1秒前
2秒前
日出发布了新的文献求助10
2秒前
Glorious完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助50
4秒前
悦耳的依风完成签到,获得积分20
4秒前
梁十八发布了新的文献求助10
5秒前
柠檬汽水发布了新的文献求助10
5秒前
龙弟弟发布了新的文献求助10
5秒前
RN发布了新的文献求助10
5秒前
霜之哀伤完成签到,获得积分10
6秒前
黄菠萝发布了新的文献求助10
6秒前
FIN应助琪玛苏采纳,获得200
7秒前
明理映真发布了新的文献求助10
9秒前
9秒前
螳螂和煤气罐完成签到 ,获得积分10
9秒前
wfwl完成签到,获得积分10
9秒前
zz发布了新的文献求助10
10秒前
追寻冰淇淋应助123采纳,获得50
10秒前
11秒前
ding应助柠檬汽水采纳,获得10
12秒前
zpj完成签到 ,获得积分10
13秒前
13秒前
Dr.Tang发布了新的文献求助10
13秒前
14秒前
忧伤的皮皮虾完成签到,获得积分10
15秒前
zzzkyt发布了新的文献求助50
15秒前
15秒前
Wanfeng应助llljiaozi采纳,获得50
16秒前
可爱的凛发布了新的文献求助10
18秒前
19秒前
Han发布了新的文献求助10
19秒前
零知识发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959467
求助须知:如何正确求助?哪些是违规求助? 3505690
关于积分的说明 11125214
捐赠科研通 3237503
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802859