Efficient multi-view semi-supervised feature selection

特征选择 计算机科学 图形 二部图 特征(语言学) 人工智能 计算 利用 机器学习 模式识别(心理学) 数据挖掘 理论计算机科学 算法 计算机安全 语言学 哲学
作者
Chenglong Zhang,Bingbing Jiang,Zidong Wang,Jie Yang,Yixiang Lu,Xingyu Wu,Weiguo Sheng
出处
期刊:Information Sciences [Elsevier BV]
卷期号:649: 119675-119675 被引量:6
标识
DOI:10.1016/j.ins.2023.119675
摘要

Multi-view semi-supervised feature selection can identify a feature subset from heterogeneous feature spaces of data. However, existing methods fail in handling large-scale data since they have to calculate the inverses of high-order dense matrices. Moreover, traditional methods often pre-construct graphs to mine the similarity structure of data, such that the interaction between graph construction and feature selection is directly ignored, degrading their effectiveness in practice. To address these issues, we propose an efficient multi-view feature selection method (EMSFS), which combines graph learning, label propagation as well as multi-view feature selection within a unified framework. Specifically, EMSFS can adaptively learn a bipartite graph between training samples and generated anchors, not only reducing the cost of graph computation but also tactfully avoiding the inverse of a high-order matrix. As a result, the main computational complexity of EMSFS is approximately linear to the number of training samples. Meanwhile, EMSFS simultaneously selects important features and exploits the similarity structure in the projected feature space, which enhances the reliability of the graph and positively facilitates feature selection. To solve the formulated objective function, we developed an alternating optimization, and experiments validate the effectiveness and the efficiency of EMSFS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助化学元素采纳,获得10
1秒前
渣渣XM发布了新的文献求助10
1秒前
赘婿应助RC_Wang采纳,获得10
3秒前
文静千凡发布了新的文献求助10
3秒前
H_不甜也是糖完成签到,获得积分10
5秒前
YY发布了新的文献求助10
6秒前
温暖琦完成签到,获得积分10
6秒前
7秒前
野性的枕头完成签到,获得积分10
9秒前
闪闪溪流完成签到,获得积分10
10秒前
洋洋发布了新的文献求助10
11秒前
hhhhh完成签到,获得积分10
11秒前
领导范儿应助NEO采纳,获得10
11秒前
大气的山彤完成签到,获得积分10
12秒前
13秒前
大模型应助YY采纳,获得10
14秒前
小马甲应助H_不甜也是糖采纳,获得10
14秒前
14秒前
16秒前
CipherSage应助洋洋采纳,获得10
16秒前
完美世界应助帅哥采纳,获得10
17秒前
LXL关闭了LXL文献求助
17秒前
DrQin发布了新的文献求助10
17秒前
cjcslhp2468发布了新的文献求助10
19秒前
basepair发布了新的文献求助10
20秒前
YY完成签到,获得积分20
20秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
whichwhy完成签到,获得积分10
22秒前
22秒前
24秒前
25秒前
朴素海亦发布了新的文献求助30
26秒前
Dina发布了新的文献求助10
27秒前
basepair完成签到,获得积分10
27秒前
NEO发布了新的文献求助10
28秒前
29秒前
hxq完成签到,获得积分10
30秒前
优美巧曼完成签到 ,获得积分10
33秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309