清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 操作系统 工程类 程序设计语言
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
woxinyouyou完成签到,获得积分0
54秒前
研友_nxw2xL完成签到,获得积分10
58秒前
1分钟前
lhl完成签到,获得积分0
1分钟前
燕晓啸完成签到 ,获得积分0
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
卧镁铀钳完成签到 ,获得积分10
2分钟前
3分钟前
如歌完成签到,获得积分10
3分钟前
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
4分钟前
风一样的风干肠完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Research完成签到 ,获得积分10
4分钟前
5分钟前
lovelife完成签到,获得积分10
5分钟前
蝎子莱莱xth完成签到,获得积分10
5分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
5分钟前
五原日落完成签到 ,获得积分10
5分钟前
Square完成签到,获得积分10
5分钟前
朱敛完成签到,获得积分20
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
Zcl完成签到 ,获得积分10
5分钟前
苏梗完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
小蘑菇应助aayy采纳,获得30
6分钟前
jie完成签到 ,获得积分10
6分钟前
大医仁心完成签到 ,获得积分10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
轨迹应助ceeray23采纳,获得20
7分钟前
8分钟前
乌迪尔应助ceeray23采纳,获得200
8分钟前
8分钟前
8分钟前
9分钟前
自然亦凝完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681808
求助须知:如何正确求助?哪些是违规求助? 5014073
关于积分的说明 15176172
捐赠科研通 4841324
什么是DOI,文献DOI怎么找? 2595108
邀请新用户注册赠送积分活动 1548148
关于科研通互助平台的介绍 1506166