Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 操作系统 工程类 程序设计语言
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weddcf发布了新的文献求助10
1秒前
小王完成签到,获得积分10
1秒前
1秒前
2秒前
赫尔tui发布了新的文献求助20
2秒前
3秒前
JamesPei应助琪琪采纳,获得10
3秒前
3秒前
3秒前
高高的高丽完成签到,获得积分10
4秒前
kwai完成签到,获得积分10
4秒前
天天快乐应助愉快的花卷采纳,获得10
4秒前
研友_ndV9Y8发布了新的文献求助10
5秒前
YZC完成签到,获得积分10
6秒前
weddcf完成签到,获得积分20
6秒前
橙子完成签到 ,获得积分10
6秒前
好好好发布了新的文献求助10
7秒前
Serrin完成签到,获得积分10
8秒前
传奇3应助楚子关采纳,获得10
8秒前
8秒前
weiyongswust发布了新的文献求助10
8秒前
9秒前
xwtx完成签到 ,获得积分10
9秒前
9秒前
10秒前
刘刘发布了新的文献求助10
11秒前
11秒前
无花果应助Vega采纳,获得10
11秒前
Li完成签到,获得积分10
11秒前
替我活着发布了新的文献求助10
12秒前
12秒前
一叶知秋完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
多摩川的烟花少年完成签到,获得积分20
14秒前
14秒前
14秒前
叶子发布了新的文献求助10
15秒前
机智路灯完成签到 ,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733747
求助须知:如何正确求助?哪些是违规求助? 5350934
关于积分的说明 15325244
捐赠科研通 4878769
什么是DOI,文献DOI怎么找? 2621401
邀请新用户注册赠送积分活动 1570515
关于科研通互助平台的介绍 1527476