Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 工程类 程序设计语言 操作系统
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助MY采纳,获得10
刚刚
Bizibili完成签到,获得积分10
1秒前
zdnn完成签到,获得积分10
1秒前
yuHS完成签到,获得积分10
2秒前
英姑应助向蔚采纳,获得10
2秒前
LaTeXer给焦糖泡芙塔的求助进行了留言
2秒前
YH完成签到,获得积分10
3秒前
脚踏实滴完成签到 ,获得积分10
3秒前
小二郎应助咸鱼王采纳,获得10
3秒前
和谐尔阳完成签到 ,获得积分10
3秒前
虚幻沛文完成签到 ,获得积分10
3秒前
miezhugong关注了科研通微信公众号
4秒前
俊逸沛菡完成签到 ,获得积分10
4秒前
三块石头完成签到,获得积分10
4秒前
jzmupyj完成签到,获得积分10
5秒前
大黑完成签到 ,获得积分10
7秒前
Buney完成签到,获得积分10
7秒前
yangzhang发布了新的文献求助10
7秒前
Nuyoah完成签到,获得积分10
9秒前
9秒前
冥冥之极为昭昭应助好困采纳,获得50
9秒前
Jankin完成签到,获得积分10
9秒前
ArdenWang完成签到,获得积分10
9秒前
10秒前
猪美丽发布了新的文献求助10
10秒前
HHHHH完成签到,获得积分10
10秒前
现实的听芹完成签到,获得积分10
10秒前
miku完成签到 ,获得积分10
11秒前
搞怪的白云完成签到 ,获得积分10
12秒前
kiker完成签到,获得积分10
13秒前
qx发布了新的文献求助10
13秒前
Matrix完成签到,获得积分10
13秒前
114555完成签到,获得积分10
14秒前
14秒前
jzmulyl完成签到,获得积分10
14秒前
Rondab应助小城故事和冰雨采纳,获得10
14秒前
15秒前
开心的白昼完成签到,获得积分10
15秒前
15秒前
hj木秀于林完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259