Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 操作系统 工程类 程序设计语言
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曹艳龙完成签到 ,获得积分10
1秒前
1秒前
卷卷发布了新的文献求助10
2秒前
4秒前
Dali应助周粥舟采纳,获得10
4秒前
诚心傲南发布了新的文献求助10
5秒前
yx发布了新的文献求助10
5秒前
彩色如之发布了新的文献求助10
6秒前
玖玖完成签到,获得积分10
7秒前
Hey发布了新的文献求助10
9秒前
9秒前
9秒前
空空发布了新的文献求助10
10秒前
小启发布了新的文献求助10
10秒前
10秒前
11秒前
扬帆起航完成签到,获得积分10
11秒前
充电宝应助under采纳,获得10
12秒前
13秒前
平常的毛豆应助jinli采纳,获得10
13秒前
su发布了新的文献求助10
15秒前
vik完成签到,获得积分10
16秒前
萱棚发布了新的文献求助10
16秒前
小白完成签到,获得积分10
16秒前
yx完成签到,获得积分10
18秒前
18秒前
19秒前
嘻嘻哈哈完成签到,获得积分10
19秒前
科研通AI6应助卷卷采纳,获得10
19秒前
qq发布了新的文献求助10
20秒前
20秒前
Ava应助qiuqiu815777采纳,获得10
20秒前
20秒前
顾矜应助日尧采纳,获得10
22秒前
SUNNY完成签到 ,获得积分10
22秒前
24秒前
bkagyin应助LZH采纳,获得10
24秒前
淡淡的雪发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600828
求助须知:如何正确求助?哪些是违规求助? 4686342
关于积分的说明 14843311
捐赠科研通 4678110
什么是DOI,文献DOI怎么找? 2538947
邀请新用户注册赠送积分活动 1505946
关于科研通互助平台的介绍 1471241