亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 工程类 程序设计语言 操作系统
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
16秒前
邬美杰发布了新的文献求助10
19秒前
深情安青应助邬美杰采纳,获得10
25秒前
羽魄完成签到 ,获得积分10
29秒前
李铃锐发布了新的文献求助10
29秒前
Scheduling完成签到 ,获得积分10
34秒前
邬美杰完成签到,获得积分10
46秒前
59秒前
1分钟前
YNHN发布了新的文献求助10
1分钟前
爆米花应助YNHN采纳,获得10
1分钟前
wingmay完成签到,获得积分10
1分钟前
nchudddd发布了新的文献求助20
1分钟前
wingmay发布了新的文献求助10
1分钟前
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
天天快乐应助饭团不吃鱼采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
CodeCraft应助Ss采纳,获得10
2分钟前
2分钟前
2分钟前
落寞惮发布了新的文献求助10
2分钟前
2分钟前
Wone3完成签到 ,获得积分10
2分钟前
LZY完成签到,获得积分10
2分钟前
斯文的访烟完成签到,获得积分10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
3分钟前
3分钟前
123完成签到,获得积分10
3分钟前
3分钟前
张安然发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650903
求助须知:如何正确求助?哪些是违规求助? 4782013
关于积分的说明 15052718
捐赠科研通 4809666
什么是DOI,文献DOI怎么找? 2572478
邀请新用户注册赠送积分活动 1528514
关于科研通互助平台的介绍 1487478