Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 操作系统 工程类 程序设计语言
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Ztx采纳,获得10
刚刚
无名应助鲤鱼迎蕾采纳,获得20
刚刚
郝誉发布了新的文献求助10
刚刚
刚刚
刚刚
挽风发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
元谷雪发布了新的文献求助10
3秒前
wanci应助清脆惜寒采纳,获得10
4秒前
沉默鸵鸟关注了科研通微信公众号
4秒前
QianZ发布了新的文献求助30
4秒前
6秒前
老兵完成签到,获得积分10
6秒前
平常访旋发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
风清扬发布了新的文献求助10
8秒前
yourenpkma123完成签到,获得积分10
8秒前
科研通AI2S应助张弘民采纳,获得10
8秒前
xinxin完成签到,获得积分10
9秒前
华仔应助舒心的梦松采纳,获得10
9秒前
9秒前
10秒前
鳗鱼语薇发布了新的文献求助10
10秒前
破晓星完成签到,获得积分10
10秒前
11秒前
不要温水煮青蛙关注了科研通微信公众号
12秒前
fhbsdufh发布了新的文献求助10
12秒前
yourenpkma123发布了新的文献求助10
13秒前
Ava应助负责玉米采纳,获得30
13秒前
13秒前
13秒前
Ztx发布了新的文献求助10
14秒前
14秒前
zzzzzyy发布了新的文献求助10
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277