Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 操作系统 工程类 程序设计语言
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
妉甛完成签到,获得积分10
1秒前
852应助yjj采纳,获得10
3秒前
顾矜应助霍志美采纳,获得10
3秒前
djyu发布了新的文献求助10
4秒前
4秒前
闻屿完成签到,获得积分10
4秒前
4秒前
科研通AI5应助QQ采纳,获得10
4秒前
4秒前
YuLu发布了新的文献求助10
5秒前
宇文一发布了新的文献求助10
5秒前
xiaoju发布了新的文献求助10
5秒前
贰拾-2完成签到,获得积分10
5秒前
5秒前
FashionBoy应助快乐二方采纳,获得10
6秒前
烟花发布了新的文献求助10
6秒前
善学以致用应助cencen采纳,获得10
7秒前
orixero应助KON采纳,获得10
7秒前
LYY发布了新的文献求助10
8秒前
蓝多多发布了新的文献求助10
8秒前
善学以致用应助追光少年采纳,获得10
8秒前
储祥群完成签到,获得积分10
8秒前
wanci应助jack采纳,获得10
9秒前
星辰大海应助最长的旅途采纳,获得10
9秒前
QQ完成签到,获得积分10
9秒前
9秒前
meng完成签到,获得积分10
9秒前
柒柒完成签到,获得积分10
9秒前
chengli发布了新的文献求助10
10秒前
传统的夜南完成签到,获得积分10
10秒前
10秒前
火乐完成签到 ,获得积分10
10秒前
我是老大应助高高采纳,获得10
11秒前
星辰大海应助luo采纳,获得10
11秒前
11秒前
超级无敌学术苦瓜完成签到,获得积分20
11秒前
zcl应助谌丽华采纳,获得20
11秒前
科研通AI6应助祁尒采纳,获得10
12秒前
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639