Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 操作系统 工程类 程序设计语言
作者
Fangzheng Zhou,Fei Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Wu Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121425-121425 被引量:1
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘灯发布了新的文献求助50
刚刚
爆米花应助生动的凡采纳,获得10
1秒前
Gauss应助lamp采纳,获得30
1秒前
汉堡包应助不安的橘子采纳,获得10
1秒前
wing完成签到,获得积分10
1秒前
小二郎应助现实的访云采纳,获得10
2秒前
小蘑菇应助glj采纳,获得10
2秒前
猛犸象完成签到,获得积分10
3秒前
舒适夜山完成签到,获得积分20
3秒前
Jacky发布了新的文献求助10
3秒前
研友_38KJRZ完成签到,获得积分10
3秒前
3秒前
4秒前
ayu发布了新的文献求助10
4秒前
5秒前
TGU的小马同学完成签到 ,获得积分10
5秒前
舒服的初蓝完成签到,获得积分10
5秒前
5秒前
夏虫完成签到,获得积分10
7秒前
7秒前
7秒前
在水一方应助Liu1YT采纳,获得10
7秒前
ll完成签到,获得积分10
7秒前
7秒前
舒适夜山发布了新的文献求助10
8秒前
wjoker发布了新的文献求助30
8秒前
wmq发布了新的文献求助10
8秒前
lii完成签到,获得积分20
9秒前
齐天大圣完成签到 ,获得积分10
10秒前
Akim应助庸人自扰采纳,获得10
10秒前
时然完成签到 ,获得积分10
10秒前
11秒前
许nana完成签到 ,获得积分10
11秒前
11秒前
烟花应助liuguyue采纳,获得10
11秒前
追寻不平发布了新的文献求助10
11秒前
12秒前
默默松思发布了新的文献求助10
13秒前
14秒前
小蘑菇应助臭小子采纳,获得30
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912