Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 操作系统 工程类 程序设计语言
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7777777发布了新的文献求助10
刚刚
Dr.He发布了新的文献求助10
2秒前
诗瑜完成签到,获得积分10
2秒前
我有一只小毛驴从来也不骑完成签到,获得积分10
2秒前
3秒前
licheng完成签到,获得积分10
3秒前
3秒前
Peng完成签到 ,获得积分10
3秒前
zanyez完成签到,获得积分10
4秒前
zcl发布了新的文献求助10
4秒前
5秒前
6秒前
JamesPei应助郑旭辉采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
吉吉国王的跟班完成签到 ,获得积分10
8秒前
9秒前
JJ完成签到,获得积分10
9秒前
顺心凡之完成签到,获得积分10
9秒前
李爱国应助Dr.He采纳,获得10
9秒前
11秒前
努力向上的小刘完成签到,获得积分10
11秒前
axt发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助燕子采纳,获得10
12秒前
13秒前
再睡亿分钟完成签到,获得积分10
13秒前
婷123完成签到,获得积分10
13秒前
顾矜应助CHOSEN1采纳,获得10
14秒前
传统的青完成签到,获得积分10
15秒前
小黄发布了新的文献求助10
15秒前
15秒前
科研通AI6应助张张采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
充电宝应助吴彦祖采纳,获得10
17秒前
18秒前
科研通AI6应助火星上小珍采纳,获得10
18秒前
毅1关注了科研通微信公众号
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952