亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unified CNN-LSTM for keyhole status prediction in PAW based on spatial-temporal features

锁孔 计算机科学 焊接 人工智能 卷积神经网络 初始化 熔池 过程(计算) 模式识别(心理学) 计算机视觉 电弧焊 机械工程 钨极气体保护焊 操作系统 工程类 程序设计语言
作者
Fangzheng Zhou,Xinfeng Liu,Chuanbao Jia,Sen Li,Jie Tian,Weilu Zhou,Chuansong Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121425-121425 被引量:15
标识
DOI:10.1016/j.eswa.2023.121425
摘要

Despite the high efficiency of keyhole plasma arc welding (K-PAW), it still has several deficiencies, such as narrow welding parameter ranges, easily disturbed welding process and instability of welding quality, etc. It is a significant prerequisite to predict the keyhole/penetration status accurately for maintaining the welding process stability and improving the welding quality. Most researchers have focused on visual inspection techniques and convolutional neural networks (CNN), establishing a mathematical model of the correlation between weld pool images and penetration status. While CNN could extract the features of single weld pool images, it is difficult to predict the evolution trend of the incoming moments. In this paper, a novel model based on CNN and LSTM (long-short term memory) was developed to extract both the spatial and temporal features of topside weld pool images, and consequently the complex keyhole behaviors were predicted and described. The comparative study is carried out on different models, i.e. the single CNN model, the single LSTM model, and the CNN-LSTM model that integrates both spatial features of single images and temporal features of sequence. The keyhole initialization and establishing period, as the typical and critical welding scenario in full-penetration welding, is investigate and compared, resulting in a predicted value that is close to reality. Furthermore, ahead prediction of keyhole status was adopted, maintaining over 80% accuracy even when predicting keyhole behaviors 2 s into the future. Consequently, the unified CNN-LSTM model effectively improves the prediction accuracy of keyhole/penetration status, promising for intelligent K-PAW technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL完成签到 ,获得积分10
26秒前
28秒前
小麦发布了新的文献求助10
40秒前
41秒前
44秒前
45秒前
45秒前
daihq3发布了新的文献求助10
47秒前
utopia完成签到,获得积分20
48秒前
文章多多发布了新的文献求助10
51秒前
Criminology34应助科研通管家采纳,获得10
52秒前
小蘑菇应助daihq3采纳,获得10
54秒前
kukudou2发布了新的文献求助10
59秒前
kuoping完成签到,获得积分0
1分钟前
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
daihq3发布了新的文献求助10
1分钟前
刘烨完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
所所应助han采纳,获得10
2分钟前
2分钟前
2分钟前
han发布了新的文献求助10
2分钟前
daihq3完成签到,获得积分10
2分钟前
ss完成签到,获得积分10
2分钟前
2分钟前
香蕉觅云应助ss采纳,获得10
2分钟前
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
han完成签到,获得积分20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
俏皮的安萱完成签到 ,获得积分10
3分钟前
淡淡二娘完成签到,获得积分10
3分钟前
在水一方应助yunshui采纳,获得10
3分钟前
3分钟前
yunshui发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639644
求助须知:如何正确求助?哪些是违规求助? 4749473
关于积分的说明 15006976
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563888
邀请新用户注册赠送积分活动 1522798
关于科研通互助平台的介绍 1482492