Artificial neural networks for predicting mechanical properties of Al2219-B4C-Gr composites with multireinforcements

材料科学 极限抗拉强度 复合材料 碳化硼 微观结构 石墨 基质(化学分析) 金属基复合材料
作者
Sharath Ballupete Nagaraju,S. Karthik,Madhu Kodigarahalli Somashekara,Dyavappanakoppalu Govindaswamy Pradeep,Madhu Puttegowda,Akarsh Verma
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (6): 2170-2184 被引量:9
标识
DOI:10.1177/09544062231196038
摘要

Artificial neural networks (ANNs) have gained prominence as a reliable model for clustering, grouping, and analysis in various domains. In recent times, machine learning (ML) models such as ANNs have proved to be on par with traditional regression and statistical models in terms of performance and usability. This study focuses on the fabrication of multicomponents-reinforced composites (Boron carbide (B 4 C) and Graphite (Gr)) using the stir casting technique. The addition of Magnesium to the melt enhances the wettability of B 4 C and Gr particles within the matrix. The microstructure and mechanical properties of the resulting Al-Mg-metal matrix composites (MMCs) are analyzed. Scanning electron micrographs reveal that B 4 C and Gr particles were uniformly dispersed in the matrix. X-Ray diffraction analysis confirmed the dispersion of the strengthening. The mechanical properties, including hardness, tensile, compressive, and impact strength, increased with the increase in B 4 C and Gr wt.%. As the percentage of B 4 C and Gr reinforcement wt.% increased, the load on the matrix reduced and its load-bearing capacity improved. The strain field generation rate also increased with an increase in B 4 C and Gr in the matrix, resulting in enhanced mechanical properties. The ANN analysis further confirmed that B 4 C was the more significant contributor to the mechanical properties of the composites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董行健发布了新的文献求助30
刚刚
1秒前
所所应助香蕉雅香采纳,获得10
1秒前
俭朴的皮卡丘完成签到 ,获得积分10
1秒前
深情安青应助Sitong采纳,获得10
1秒前
阿宝驳回了慕青应助
1秒前
lml520完成签到,获得积分10
1秒前
科研通AI2S应助飞快的三问采纳,获得10
1秒前
隐形曼青应助飞快的三问采纳,获得10
1秒前
智慧爷爷发布了新的文献求助10
2秒前
科研小畅发布了新的文献求助10
2秒前
Julie完成签到,获得积分20
2秒前
Ava应助淡淡的秋寒采纳,获得10
2秒前
科目三应助ZQP采纳,获得10
3秒前
老Mark完成签到,获得积分10
3秒前
4秒前
pangmengxuan完成签到,获得积分10
4秒前
奋斗水香发布了新的文献求助10
4秒前
4秒前
5秒前
小洪包完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
华仔应助陈豆豆采纳,获得10
6秒前
7秒前
森林木发布了新的文献求助10
8秒前
廾匸完成签到,获得积分10
8秒前
8秒前
8秒前
orixero应助优雅烨伟采纳,获得10
8秒前
孤独靖柏发布了新的文献求助10
8秒前
9秒前
Lucas应助PGH采纳,获得10
10秒前
10秒前
唠叨的晟睿完成签到,获得积分10
10秒前
廾匸发布了新的文献求助10
11秒前
11秒前
super chan发布了新的文献求助10
11秒前
SciGPT应助GTY采纳,获得10
11秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075498
求助须知:如何正确求助?哪些是违规求助? 2728589
关于积分的说明 7505148
捐赠科研通 2376734
什么是DOI,文献DOI怎么找? 1260264
科研通“疑难数据库(出版商)”最低求助积分说明 610928
版权声明 597149