Artificial neural networks for predicting mechanical properties of Al2219-B4C-Gr composites with multireinforcements

材料科学 极限抗拉强度 复合材料 碳化硼 微观结构 石墨 基质(化学分析) 金属基复合材料
作者
Sharath Ballupete Nagaraju,S. Karthik,Madhu Kodigarahalli Somashekara,Dyavappanakoppalu Govindaswamy Pradeep,Madhu Puttegowda,Akarsh Verma
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (6): 2170-2184 被引量:9
标识
DOI:10.1177/09544062231196038
摘要

Artificial neural networks (ANNs) have gained prominence as a reliable model for clustering, grouping, and analysis in various domains. In recent times, machine learning (ML) models such as ANNs have proved to be on par with traditional regression and statistical models in terms of performance and usability. This study focuses on the fabrication of multicomponents-reinforced composites (Boron carbide (B 4 C) and Graphite (Gr)) using the stir casting technique. The addition of Magnesium to the melt enhances the wettability of B 4 C and Gr particles within the matrix. The microstructure and mechanical properties of the resulting Al-Mg-metal matrix composites (MMCs) are analyzed. Scanning electron micrographs reveal that B 4 C and Gr particles were uniformly dispersed in the matrix. X-Ray diffraction analysis confirmed the dispersion of the strengthening. The mechanical properties, including hardness, tensile, compressive, and impact strength, increased with the increase in B 4 C and Gr wt.%. As the percentage of B 4 C and Gr reinforcement wt.% increased, the load on the matrix reduced and its load-bearing capacity improved. The strain field generation rate also increased with an increase in B 4 C and Gr in the matrix, resulting in enhanced mechanical properties. The ANN analysis further confirmed that B 4 C was the more significant contributor to the mechanical properties of the composites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祖乐萱发布了新的文献求助10
2秒前
陈信宏完成签到,获得积分10
3秒前
3秒前
逍遥子完成签到,获得积分10
3秒前
4秒前
ff发布了新的文献求助10
5秒前
浮游应助djbj2022采纳,获得10
5秒前
科研通AI6应助双夏采纳,获得30
7秒前
冬日空虚完成签到,获得积分10
7秒前
8秒前
10秒前
11秒前
大个应助小黄采纳,获得10
11秒前
12秒前
12秒前
jack发布了新的文献求助10
13秒前
爱笑的天空完成签到,获得积分10
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
simdows完成签到,获得积分10
17秒前
科研通AI6应助季文婷采纳,获得10
17秒前
脑洞疼应助jack采纳,获得10
21秒前
123应助儒雅致远采纳,获得10
21秒前
慕青应助儒雅致远采纳,获得10
21秒前
善学以致用应助万事都灵采纳,获得10
22秒前
Wonder罗完成签到,获得积分20
23秒前
小蘑菇应助坦率幻灵采纳,获得10
27秒前
27秒前
28秒前
29秒前
31秒前
msf0073应助JJJ采纳,获得10
33秒前
躺躺躺发布了新的文献求助10
34秒前
36秒前
37秒前
38秒前
39秒前
量子星尘发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741