Artificial neural networks for predicting mechanical properties of Al2219-B4C-Gr composites with multireinforcements

材料科学 极限抗拉强度 复合材料 碳化硼 微观结构 石墨 基质(化学分析) 金属基复合材料
作者
Sharath Ballupete Nagaraju,S. Karthik,Madhu Kodigarahalli Somashekara,Dyavappanakoppalu Govindaswamy Pradeep,Madhu Puttegowda,Akarsh Verma
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:238 (6): 2170-2184 被引量:9
标识
DOI:10.1177/09544062231196038
摘要

Artificial neural networks (ANNs) have gained prominence as a reliable model for clustering, grouping, and analysis in various domains. In recent times, machine learning (ML) models such as ANNs have proved to be on par with traditional regression and statistical models in terms of performance and usability. This study focuses on the fabrication of multicomponents-reinforced composites (Boron carbide (B 4 C) and Graphite (Gr)) using the stir casting technique. The addition of Magnesium to the melt enhances the wettability of B 4 C and Gr particles within the matrix. The microstructure and mechanical properties of the resulting Al-Mg-metal matrix composites (MMCs) are analyzed. Scanning electron micrographs reveal that B 4 C and Gr particles were uniformly dispersed in the matrix. X-Ray diffraction analysis confirmed the dispersion of the strengthening. The mechanical properties, including hardness, tensile, compressive, and impact strength, increased with the increase in B 4 C and Gr wt.%. As the percentage of B 4 C and Gr reinforcement wt.% increased, the load on the matrix reduced and its load-bearing capacity improved. The strain field generation rate also increased with an increase in B 4 C and Gr in the matrix, resulting in enhanced mechanical properties. The ANN analysis further confirmed that B 4 C was the more significant contributor to the mechanical properties of the composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美山菡发布了新的文献求助10
刚刚
刘齐完成签到,获得积分10
刚刚
Panda完成签到 ,获得积分10
刚刚
1秒前
123发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
6秒前
LI发布了新的文献求助10
7秒前
公冶笑白发布了新的文献求助200
9秒前
9秒前
好事成双发布了新的文献求助10
9秒前
jike完成签到 ,获得积分10
10秒前
10秒前
阔达棉花糖完成签到 ,获得积分10
10秒前
干净又晴发布了新的文献求助10
10秒前
11秒前
7iy发布了新的文献求助10
12秒前
完美山菡完成签到,获得积分10
12秒前
归雁完成签到,获得积分10
13秒前
14秒前
斯文败类应助七曜采纳,获得10
16秒前
17秒前
博修发布了新的文献求助10
18秒前
18秒前
可可完成签到,获得积分10
19秒前
科研通AI5应助Panda采纳,获得10
20秒前
lh23发布了新的文献求助10
21秒前
绿泡泡发布了新的文献求助10
21秒前
bias完成签到,获得积分10
22秒前
22秒前
我是老大应助咻咻采纳,获得30
22秒前
23秒前
爆米花应助Muhammad采纳,获得10
23秒前
ZhongWenwen完成签到,获得积分10
26秒前
26秒前
完美山菡关注了科研通微信公众号
27秒前
灭杀之紫电完成签到,获得积分10
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176