Artificial neural networks for predicting mechanical properties of Al2219-B4C-Gr composites with multireinforcements

材料科学 极限抗拉强度 复合材料 碳化硼 微观结构 石墨 基质(化学分析) 金属基复合材料
作者
Sharath Ballupete Nagaraju,S. Karthik,Madhu Kodigarahalli Somashekara,Dyavappanakoppalu Govindaswamy Pradeep,Madhu Puttegowda,Akarsh Verma
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (6): 2170-2184 被引量:9
标识
DOI:10.1177/09544062231196038
摘要

Artificial neural networks (ANNs) have gained prominence as a reliable model for clustering, grouping, and analysis in various domains. In recent times, machine learning (ML) models such as ANNs have proved to be on par with traditional regression and statistical models in terms of performance and usability. This study focuses on the fabrication of multicomponents-reinforced composites (Boron carbide (B 4 C) and Graphite (Gr)) using the stir casting technique. The addition of Magnesium to the melt enhances the wettability of B 4 C and Gr particles within the matrix. The microstructure and mechanical properties of the resulting Al-Mg-metal matrix composites (MMCs) are analyzed. Scanning electron micrographs reveal that B 4 C and Gr particles were uniformly dispersed in the matrix. X-Ray diffraction analysis confirmed the dispersion of the strengthening. The mechanical properties, including hardness, tensile, compressive, and impact strength, increased with the increase in B 4 C and Gr wt.%. As the percentage of B 4 C and Gr reinforcement wt.% increased, the load on the matrix reduced and its load-bearing capacity improved. The strain field generation rate also increased with an increase in B 4 C and Gr in the matrix, resulting in enhanced mechanical properties. The ANN analysis further confirmed that B 4 C was the more significant contributor to the mechanical properties of the composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zq00完成签到,获得积分10
刚刚
刚刚
斯文败类应助独木舟采纳,获得10
刚刚
易哒哒完成签到,获得积分10
刚刚
CCL应助QXS采纳,获得50
1秒前
大方安白完成签到,获得积分10
1秒前
Xxaaa完成签到,获得积分20
1秒前
张小敏完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
科研通AI2S应助Zhong采纳,获得10
3秒前
yidashi完成签到,获得积分10
3秒前
Kelvin.Tsi完成签到 ,获得积分10
3秒前
Island发布了新的文献求助10
4秒前
hu970发布了新的文献求助10
4秒前
九九发布了新的文献求助10
4秒前
123456完成签到,获得积分10
4秒前
BareBear应助龙妍琳采纳,获得10
4秒前
赘婿应助wary采纳,获得10
5秒前
小蘑菇应助wary采纳,获得10
5秒前
上官若男应助wary采纳,获得10
5秒前
李爱国应助木子采纳,获得10
5秒前
烟花应助马佳凯采纳,获得10
5秒前
5秒前
LYL完成签到,获得积分10
6秒前
6秒前
得意凡人完成签到,获得积分10
6秒前
6秒前
害怕的擎宇完成签到,获得积分10
7秒前
柳絮完成签到,获得积分20
7秒前
8秒前
赫连烙发布了新的文献求助10
8秒前
目遇给目遇的求助进行了留言
9秒前
Arnold发布了新的文献求助10
10秒前
在九月完成签到 ,获得积分10
10秒前
selfevidbet发布了新的文献求助30
10秒前
通~发布了新的文献求助10
10秒前
靓仔完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762