The Use of Quantitative Metrics and Machine Learning to Predict Radiologist Interpretations of MRI Image Quality and Artifacts

图像质量 工件(错误) 人工智能 计算机科学 公制(单位) 分类器(UML) 性能指标 机器学习 随机森林 决策树 模式识别(心理学) 数据挖掘 图像(数学) 工程类 管理 经济 运营管理
作者
Lucas McCullum,John Wood,Maria Gule-Monroe,Ho-Ling Anthony Liu,Melissa Chen,Komal Shah,Noah Nathan Chasen,Vinodh Kumar,Ping Hou,Jason Stafford,Caroline Chung,Moiz Ahmad,Christopher J. Walker,Joshua P. Yung
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2311.05412
摘要

A dataset of 3D-GRE and 3D-TSE brain 3T post contrast T1-weighted images as part of a quality improvement project were collected and shown to five neuro-radiologists who evaluated each sequence for both image quality and imaging artifacts. The same scans were processed using the MRQy tool for objective, quantitative image quality metrics. Using the combined radiologist and quantitative metrics dataset, a decision tree classifier with a bagging ensemble approach was trained to predict radiologist assessment using the quantitative metrics. A machine learning model was developed for the following three tasks: (1) determine the best model / performance for each MRI sequence and evaluation metric, (2) determine the best model / performance across all MRI sequences for each evaluation metric, and (3) determine the best general model / performance across all MRI sequences and evaluations. Model performance for imaging artifact was slightly higher than image quality, for example, the final generalized model AUROC for image quality was 0.77 (0.41 - 0.84, 95% CI) while imaging artifact was 0.78 (0.60 - 0.93, 95% CI). Further, it was noted that the generalized model performed slightly better than the individual models (AUROC 0.69 for 3D-GRE image quality, for example), indicating the value in comprehensive training data for these applications. These models could be deployed in the clinic as automatic checks for real-time image acquisition to prevent patient re-scanning requiring another appointment after retrospective radiologist analysis or improve reader confidence in the study. Further work needs to be done to validate the model described here on an external dataset. The results presented here suggest that MRQy could be used as a foundation for quantitative metrics as a surrogate for radiologist assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的皮带完成签到,获得积分20
刚刚
荷戟执子手完成签到,获得积分10
1秒前
1秒前
shrimp5215完成签到,获得积分10
2秒前
11完成签到,获得积分10
2秒前
无限的千凝完成签到 ,获得积分10
3秒前
整齐百褶裙完成签到 ,获得积分10
3秒前
4秒前
英俊雅柏完成签到,获得积分10
4秒前
sunyanghu369完成签到,获得积分10
4秒前
小白发布了新的文献求助10
5秒前
ll发布了新的文献求助10
6秒前
犹豫战斗机完成签到,获得积分10
6秒前
文献狂人完成签到,获得积分10
7秒前
槑槑完成签到 ,获得积分10
7秒前
jojo完成签到 ,获得积分10
8秒前
8秒前
可爱的小树苗完成签到,获得积分10
9秒前
研友_8WzJOZ完成签到,获得积分10
9秒前
阿白完成签到,获得积分10
9秒前
cxlhzq完成签到,获得积分10
10秒前
若也完成签到,获得积分10
10秒前
silin完成签到,获得积分10
10秒前
落寞的冰姬完成签到,获得积分10
11秒前
11秒前
滕滕完成签到,获得积分10
11秒前
老王爱学习完成签到,获得积分10
11秒前
华老五完成签到,获得积分10
12秒前
Kitty完成签到,获得积分10
12秒前
Lucas应助WHUT-Batteries采纳,获得10
12秒前
自信的汉堡完成签到,获得积分10
13秒前
如意雨雪完成签到 ,获得积分10
13秒前
Lina完成签到 ,获得积分10
14秒前
石子发布了新的文献求助10
14秒前
李宏梅完成签到,获得积分10
14秒前
APS完成签到,获得积分10
16秒前
DAI完成签到,获得积分10
16秒前
Horizon完成签到 ,获得积分10
17秒前
黎初阳完成签到,获得积分10
17秒前
王倩的老公完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5175086
求助须知:如何正确求助?哪些是违规求助? 4364428
关于积分的说明 13586706
捐赠科研通 4213528
什么是DOI,文献DOI怎么找? 2311076
邀请新用户注册赠送积分活动 1310068
关于科研通互助平台的介绍 1258103