The Use of Quantitative Metrics and Machine Learning to Predict Radiologist Interpretations of MRI Image Quality and Artifacts

图像质量 工件(错误) 人工智能 计算机科学 公制(单位) 分类器(UML) 性能指标 机器学习 随机森林 决策树 模式识别(心理学) 数据挖掘 图像(数学) 工程类 管理 经济 运营管理
作者
Lucas McCullum,John Wood,Maria Gule-Monroe,Ho-Ling Anthony Liu,Melissa Chen,Komal Shah,Noah Nathan Chasen,Vinodh Kumar,Ping Hou,Jason Stafford,Caroline Chung,Moiz Ahmad,Christopher J. Walker,Joshua P. Yung
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2311.05412
摘要

A dataset of 3D-GRE and 3D-TSE brain 3T post contrast T1-weighted images as part of a quality improvement project were collected and shown to five neuro-radiologists who evaluated each sequence for both image quality and imaging artifacts. The same scans were processed using the MRQy tool for objective, quantitative image quality metrics. Using the combined radiologist and quantitative metrics dataset, a decision tree classifier with a bagging ensemble approach was trained to predict radiologist assessment using the quantitative metrics. A machine learning model was developed for the following three tasks: (1) determine the best model / performance for each MRI sequence and evaluation metric, (2) determine the best model / performance across all MRI sequences for each evaluation metric, and (3) determine the best general model / performance across all MRI sequences and evaluations. Model performance for imaging artifact was slightly higher than image quality, for example, the final generalized model AUROC for image quality was 0.77 (0.41 - 0.84, 95% CI) while imaging artifact was 0.78 (0.60 - 0.93, 95% CI). Further, it was noted that the generalized model performed slightly better than the individual models (AUROC 0.69 for 3D-GRE image quality, for example), indicating the value in comprehensive training data for these applications. These models could be deployed in the clinic as automatic checks for real-time image acquisition to prevent patient re-scanning requiring another appointment after retrospective radiologist analysis or improve reader confidence in the study. Further work needs to be done to validate the model described here on an external dataset. The results presented here suggest that MRQy could be used as a foundation for quantitative metrics as a surrogate for radiologist assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助心随以动采纳,获得10
1秒前
yang发布了新的文献求助10
1秒前
赵三岁发布了新的文献求助10
1秒前
1秒前
丘比特应助ERIS采纳,获得10
2秒前
2秒前
爱学习的混子完成签到,获得积分10
3秒前
小伟跑位发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助111222采纳,获得10
5秒前
机灵柚子发布了新的文献求助20
5秒前
liwei发布了新的文献求助10
5秒前
英俊的铭应助Artsuhtaraz采纳,获得10
6秒前
6秒前
星河zp发布了新的文献求助10
6秒前
繁荣的莫言完成签到 ,获得积分10
7秒前
ephore应助斯文念波采纳,获得30
7秒前
67完成签到,获得积分10
7秒前
ephore应助Jackie_Chan采纳,获得30
7秒前
jing发布了新的文献求助30
7秒前
丽莫莫发布了新的文献求助10
7秒前
7秒前
深情安青应助潇洒映冬采纳,获得10
7秒前
klicking完成签到,获得积分10
8秒前
赵三岁完成签到,获得积分10
8秒前
哈哈哈哈完成签到 ,获得积分10
8秒前
8秒前
网安真难T_T完成签到,获得积分10
8秒前
甜甜玫瑰应助风中绿蝶采纳,获得10
9秒前
流星发布了新的文献求助10
10秒前
10秒前
10秒前
852应助科研小白采纳,获得10
10秒前
微澜发布了新的文献求助10
11秒前
爆米花应助哈喽酷狗采纳,获得10
12秒前
sanlunainiu发布了新的文献求助10
14秒前
daniel完成签到 ,获得积分10
15秒前
lili发布了新的文献求助10
15秒前
attilio发布了新的文献求助10
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221535
求助须知:如何正确求助?哪些是违规求助? 2870209
关于积分的说明 8169557
捐赠科研通 2537019
什么是DOI,文献DOI怎么找? 1369271
科研通“疑难数据库(出版商)”最低求助积分说明 645397
邀请新用户注册赠送积分活动 619067