The Use of Quantitative Metrics and Machine Learning to Predict Radiologist Interpretations of MRI Image Quality and Artifacts

图像质量 工件(错误) 人工智能 计算机科学 公制(单位) 分类器(UML) 性能指标 机器学习 随机森林 决策树 模式识别(心理学) 数据挖掘 图像(数学) 工程类 经济 管理 运营管理
作者
Lucas McCullum,John Wood,Maria Gule-Monroe,Ho-Ling Anthony Liu,Melissa Chen,Komal Shah,Noah Nathan Chasen,Vinodh Kumar,Ping Hou,Jason Stafford,Caroline Chung,Moiz Ahmad,Christopher J. Walker,Joshua P. Yung
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2311.05412
摘要

A dataset of 3D-GRE and 3D-TSE brain 3T post contrast T1-weighted images as part of a quality improvement project were collected and shown to five neuro-radiologists who evaluated each sequence for both image quality and imaging artifacts. The same scans were processed using the MRQy tool for objective, quantitative image quality metrics. Using the combined radiologist and quantitative metrics dataset, a decision tree classifier with a bagging ensemble approach was trained to predict radiologist assessment using the quantitative metrics. A machine learning model was developed for the following three tasks: (1) determine the best model / performance for each MRI sequence and evaluation metric, (2) determine the best model / performance across all MRI sequences for each evaluation metric, and (3) determine the best general model / performance across all MRI sequences and evaluations. Model performance for imaging artifact was slightly higher than image quality, for example, the final generalized model AUROC for image quality was 0.77 (0.41 - 0.84, 95% CI) while imaging artifact was 0.78 (0.60 - 0.93, 95% CI). Further, it was noted that the generalized model performed slightly better than the individual models (AUROC 0.69 for 3D-GRE image quality, for example), indicating the value in comprehensive training data for these applications. These models could be deployed in the clinic as automatic checks for real-time image acquisition to prevent patient re-scanning requiring another appointment after retrospective radiologist analysis or improve reader confidence in the study. Further work needs to be done to validate the model described here on an external dataset. The results presented here suggest that MRQy could be used as a foundation for quantitative metrics as a surrogate for radiologist assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
爆米花应助naplzp采纳,获得20
2秒前
2秒前
sfwrbh发布了新的文献求助10
3秒前
徐昊雯发布了新的文献求助10
3秒前
科研通AI2S应助wxy采纳,获得10
3秒前
mutong发布了新的文献求助10
3秒前
lx完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助50
4秒前
4秒前
ze发布了新的文献求助10
4秒前
慕子默发布了新的文献求助20
4秒前
5秒前
5秒前
甜美鬼神发布了新的文献求助10
5秒前
5秒前
飘逸凝丝发布了新的文献求助10
5秒前
昱旻发布了新的文献求助10
5秒前
lxyy应助西大喜采纳,获得10
6秒前
夜雨潇潇完成签到,获得积分10
6秒前
6秒前
ly发布了新的文献求助10
7秒前
善学以致用应助林一木采纳,获得10
7秒前
兰彻完成签到,获得积分10
7秒前
8秒前
何大青完成签到,获得积分10
8秒前
8秒前
还单身的访曼完成签到,获得积分20
8秒前
9秒前
Morois发布了新的文献求助10
9秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
苗苗发布了新的文献求助10
10秒前
所所应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
DijiaXu应助科研通管家采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437