The Use of Quantitative Metrics and Machine Learning to Predict Radiologist Interpretations of MRI Image Quality and Artifacts

图像质量 工件(错误) 人工智能 计算机科学 公制(单位) 分类器(UML) 性能指标 机器学习 随机森林 决策树 模式识别(心理学) 数据挖掘 图像(数学) 工程类 管理 经济 运营管理
作者
Lucas McCullum,John Wood,Maria Gule-Monroe,Ho-Ling Anthony Liu,Melissa Chen,Komal Shah,Noah Nathan Chasen,Vinodh Kumar,Ping Hou,Jason Stafford,Caroline Chung,Moiz Ahmad,Christopher J. Walker,Joshua P. Yung
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2311.05412
摘要

A dataset of 3D-GRE and 3D-TSE brain 3T post contrast T1-weighted images as part of a quality improvement project were collected and shown to five neuro-radiologists who evaluated each sequence for both image quality and imaging artifacts. The same scans were processed using the MRQy tool for objective, quantitative image quality metrics. Using the combined radiologist and quantitative metrics dataset, a decision tree classifier with a bagging ensemble approach was trained to predict radiologist assessment using the quantitative metrics. A machine learning model was developed for the following three tasks: (1) determine the best model / performance for each MRI sequence and evaluation metric, (2) determine the best model / performance across all MRI sequences for each evaluation metric, and (3) determine the best general model / performance across all MRI sequences and evaluations. Model performance for imaging artifact was slightly higher than image quality, for example, the final generalized model AUROC for image quality was 0.77 (0.41 - 0.84, 95% CI) while imaging artifact was 0.78 (0.60 - 0.93, 95% CI). Further, it was noted that the generalized model performed slightly better than the individual models (AUROC 0.69 for 3D-GRE image quality, for example), indicating the value in comprehensive training data for these applications. These models could be deployed in the clinic as automatic checks for real-time image acquisition to prevent patient re-scanning requiring another appointment after retrospective radiologist analysis or improve reader confidence in the study. Further work needs to be done to validate the model described here on an external dataset. The results presented here suggest that MRQy could be used as a foundation for quantitative metrics as a surrogate for radiologist assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虞丹萱发布了新的文献求助10
1秒前
科研通AI2S应助wang采纳,获得30
2秒前
2秒前
mjlink完成签到,获得积分10
2秒前
香蕉觅云应助孟孟孟采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
Eternitymaria发布了新的文献求助10
7秒前
怂怂鼠发布了新的文献求助10
8秒前
祁白曼完成签到,获得积分10
9秒前
10秒前
轩辕德地完成签到,获得积分10
10秒前
华仔应助缓慢听筠采纳,获得10
12秒前
Solar energy完成签到,获得积分10
12秒前
13秒前
14秒前
凉凉应助橓厉采纳,获得30
14秒前
Hello应助龚幻梦采纳,获得10
16秒前
golf完成签到,获得积分10
20秒前
20秒前
20秒前
龚幻梦完成签到,获得积分10
21秒前
22秒前
凉凉应助张不停采纳,获得10
24秒前
凉凉应助张不停采纳,获得10
24秒前
黄迪迪完成签到 ,获得积分10
26秒前
龚幻梦发布了新的文献求助10
26秒前
淡淡的白羊完成签到 ,获得积分10
27秒前
27秒前
28秒前
清爽的蛋挞完成签到,获得积分10
29秒前
茹茹完成签到 ,获得积分10
33秒前
36秒前
jun发布了新的文献求助20
36秒前
oblivious完成签到,获得积分10
36秒前
ice完成签到,获得积分10
37秒前
Vicky完成签到 ,获得积分10
39秒前
40秒前
pink完成签到,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010774
求助须知:如何正确求助?哪些是违规求助? 3550436
关于积分的说明 11305765
捐赠科研通 3284800
什么是DOI,文献DOI怎么找? 1810853
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811499