User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 电气工程 操作系统
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier BV]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EIEI完成签到,获得积分10
1秒前
1秒前
啾咪发布了新的文献求助20
1秒前
中宝完成签到,获得积分10
2秒前
Xu完成签到 ,获得积分10
2秒前
CodeCraft应助王哒哒采纳,获得10
2秒前
hydrogen完成签到,获得积分10
3秒前
马晓玲完成签到,获得积分20
3秒前
3秒前
两袖清风完成签到 ,获得积分10
3秒前
4秒前
小马甲应助小刘小刘采纳,获得10
4秒前
zhenxing完成签到,获得积分10
4秒前
阿宇发布了新的文献求助10
5秒前
等待的网络完成签到,获得积分10
5秒前
啵啵阳子完成签到,获得积分10
5秒前
6秒前
decademe完成签到,获得积分10
6秒前
小猴儿完成签到,获得积分10
6秒前
奶油布丁发布了新的文献求助10
6秒前
6秒前
7秒前
王叮叮完成签到,获得积分10
8秒前
小_n完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
喜悦的广山完成签到,获得积分20
8秒前
123w123完成签到,获得积分10
8秒前
Eric完成签到,获得积分10
9秒前
郝富完成签到,获得积分0
9秒前
坚定茉莉完成签到,获得积分10
9秒前
9秒前
叫我富婆儿完成签到,获得积分10
9秒前
小怪兽完成签到,获得积分10
10秒前
科研通AI6应助小明采纳,获得10
10秒前
11秒前
Cactus发布了新的文献求助10
11秒前
星之月发布了新的文献求助10
12秒前
13秒前
Stephhen完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614030
求助须知:如何正确求助?哪些是违规求助? 4018429
关于积分的说明 12438324
捐赠科研通 3701118
什么是DOI,文献DOI怎么找? 2041105
邀请新用户注册赠送积分活动 1073803
科研通“疑难数据库(出版商)”最低求助积分说明 957479