User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 电气工程 操作系统
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助欧阳万仇采纳,获得10
刚刚
刚刚
小葵完成签到,获得积分10
刚刚
所所应助ZXC采纳,获得10
刚刚
Criminology34应助xhxh5946采纳,获得10
刚刚
1秒前
陈年人少熬夜完成签到 ,获得积分10
1秒前
尊敬的惠发布了新的文献求助30
1秒前
2秒前
2秒前
Yianyan完成签到 ,获得积分20
2秒前
aac完成签到,获得积分10
2秒前
sss关注了科研通微信公众号
2秒前
雪松发布了新的文献求助10
2秒前
linkman发布了新的文献求助50
3秒前
Mic应助FyD采纳,获得10
3秒前
3秒前
脑洞疼应助文右三采纳,获得10
4秒前
醒醒应助懒羊羊采纳,获得10
4秒前
4秒前
4秒前
sdh7941发布了新的文献求助10
5秒前
Tobiuo发布了新的文献求助10
6秒前
tgg发布了新的文献求助10
6秒前
共享精神应助宝宝采纳,获得10
7秒前
7秒前
7秒前
文献一搜就出完成签到,获得积分10
8秒前
DQY发布了新的文献求助10
8秒前
元谷雪发布了新的文献求助10
8秒前
寻道图强应助苹果采纳,获得50
8秒前
8秒前
RA000发布了新的文献求助10
8秒前
8秒前
二狗发布了新的文献求助10
8秒前
wawoo完成签到,获得积分10
9秒前
哈哈完成签到 ,获得积分10
9秒前
11秒前
小二发布了新的文献求助10
11秒前
shiyue应助lj采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360