清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 电气工程 操作系统
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuki完成签到 ,获得积分10
3秒前
tad81完成签到,获得积分10
15秒前
小二郎应助ppf采纳,获得10
26秒前
王佳亮完成签到,获得积分10
31秒前
火星上的雨柏完成签到 ,获得积分10
32秒前
秋秋完成签到 ,获得积分10
39秒前
39秒前
ceeray23发布了新的文献求助20
40秒前
徐团伟完成签到 ,获得积分10
40秒前
coolplex完成签到 ,获得积分10
47秒前
莃莃莃喜欢你完成签到 ,获得积分10
47秒前
李健的小迷弟应助ceeray23采纳,获得20
48秒前
桐桐应助ceeray23采纳,获得20
52秒前
1分钟前
t铁核桃1985完成签到 ,获得积分0
1分钟前
点点完成签到 ,获得积分10
1分钟前
1分钟前
ppf发布了新的文献求助10
1分钟前
1分钟前
空儒完成签到 ,获得积分10
1分钟前
Criminology34应助CXS采纳,获得10
1分钟前
1分钟前
lsl完成签到 ,获得积分10
1分钟前
Criminology34应助CXS采纳,获得10
1分钟前
Tree_QD完成签到 ,获得积分10
1分钟前
无极2023完成签到 ,获得积分10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
2分钟前
kittykitten完成签到 ,获得积分10
2分钟前
刘丰完成签到 ,获得积分10
2分钟前
爆米花应助ppf采纳,获得10
2分钟前
正直的夏真完成签到 ,获得积分10
2分钟前
2分钟前
慕豁发布了新的文献求助10
2分钟前
2分钟前
科科通通完成签到,获得积分10
2分钟前
慕豁完成签到,获得积分10
2分钟前
2分钟前
3分钟前
yushiolo完成签到 ,获得积分10
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614971
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551