User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 操作系统 电气工程
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋瑞轩发布了新的文献求助10
刚刚
YXM1完成签到,获得积分10
刚刚
斯文静竹完成签到,获得积分10
刚刚
1秒前
小米应助hohn采纳,获得10
2秒前
huanqi发布了新的文献求助10
3秒前
lingyan发布了新的文献求助10
3秒前
神勇的天问完成签到,获得积分10
3秒前
优雅山柏发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
缓慢沁完成签到,获得积分10
4秒前
莜心发布了新的文献求助10
4秒前
蒋瑞轩完成签到,获得积分10
5秒前
账户已注销完成签到,获得积分0
5秒前
花海发布了新的文献求助10
6秒前
冰月雪蝶发布了新的文献求助10
7秒前
7秒前
逐鹿呦呦完成签到,获得积分10
8秒前
8秒前
tony完成签到,获得积分10
8秒前
斯文酒精灯完成签到,获得积分10
8秒前
旺仔先生完成签到,获得积分0
8秒前
Yanxuan发布了新的文献求助10
9秒前
Xx发布了新的文献求助10
10秒前
搜集达人应助段凯采纳,获得10
11秒前
ding应助花海采纳,获得10
12秒前
12秒前
god13less关注了科研通微信公众号
13秒前
量子星尘发布了新的文献求助10
14秒前
shanage应助冰月雪蝶采纳,获得10
14秒前
xxxx完成签到,获得积分10
15秒前
16秒前
16秒前
Layla完成签到,获得积分10
17秒前
天天快乐应助火星上忆山采纳,获得10
18秒前
自信的绮南完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775480
求助须知:如何正确求助?哪些是违规求助? 5624445
关于积分的说明 15438830
捐赠科研通 4907762
什么是DOI,文献DOI怎么找? 2640954
邀请新用户注册赠送积分活动 1588765
关于科研通互助平台的介绍 1543627