User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 电气工程 操作系统
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气方盒完成签到,获得积分20
刚刚
中中发布了新的文献求助50
刚刚
zzz发布了新的文献求助10
刚刚
标致的问晴完成签到,获得积分10
3秒前
3秒前
欢呼芷雪完成签到 ,获得积分10
3秒前
4秒前
学分发布了新的文献求助10
4秒前
文艺的筮完成签到 ,获得积分10
5秒前
情怀应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
充电宝应助科研通管家采纳,获得20
6秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
爱静静应助霸气方盒采纳,获得10
7秒前
9秒前
DiDi发布了新的文献求助10
9秒前
期许发布了新的文献求助10
14秒前
NICKPLZ完成签到,获得积分10
15秒前
无花果应助DiDi采纳,获得10
16秒前
阔达莫英发布了新的文献求助10
16秒前
16秒前
干净含烟发布了新的文献求助10
21秒前
XxxxxxENT完成签到,获得积分10
21秒前
23秒前
24秒前
高大的大米完成签到,获得积分10
24秒前
yn完成签到 ,获得积分10
25秒前
SSSYYY完成签到,获得积分10
25秒前
一看论文就困完成签到,获得积分10
25秒前
寒冷寻桃完成签到 ,获得积分10
26秒前
期许完成签到,获得积分10
26秒前
脑洞疼应助mysoul123采纳,获得10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797336
捐赠科研通 2447358
什么是DOI,文献DOI怎么找? 1301860
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194