User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 操作系统 电气工程
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
决明子完成签到 ,获得积分10
1秒前
希望天下0贩的0应助柚子采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
9℃完成签到 ,获得积分10
6秒前
单纯黑米完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助30
7秒前
勤恳洙发布了新的文献求助10
8秒前
祝笑柳完成签到,获得积分10
9秒前
秋qiu完成签到,获得积分10
9秒前
NINI完成签到 ,获得积分10
10秒前
liuzengzhang666完成签到,获得积分10
12秒前
13秒前
小巧的牛排完成签到 ,获得积分10
13秒前
所所应助柚子采纳,获得10
14秒前
14秒前
刘濮源发布了新的文献求助10
14秒前
14秒前
充电宝应助123采纳,获得10
14秒前
lljiaa应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
ylt应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
Maricey应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
所所应助科研通管家采纳,获得10
17秒前
lljiaa应助科研通管家采纳,获得10
17秒前
17秒前
Orange应助科研通管家采纳,获得10
17秒前
ylt应助科研通管家采纳,获得10
17秒前
17秒前
Lny应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得30
17秒前
Maricey应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
Lny应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978