User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 电气工程 操作系统
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier BV]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仇丹秋完成签到,获得积分10
1秒前
香蕉觅云应助包容新蕾采纳,获得10
1秒前
4秒前
仇丹秋发布了新的文献求助50
5秒前
turbohero完成签到,获得积分10
7秒前
李爱国应助爱科研的罗罗采纳,获得10
8秒前
感谢大哥的帮助完成签到 ,获得积分10
8秒前
天天快乐应助思维隋采纳,获得10
9秒前
林布林发布了新的文献求助10
11秒前
wxy完成签到,获得积分10
13秒前
隐形曼青应助临水思长采纳,获得10
16秒前
20秒前
科研通AI2S应助林布林采纳,获得10
20秒前
小马甲应助王子萌采纳,获得10
21秒前
21秒前
24秒前
wanci应助song采纳,获得10
25秒前
26秒前
26秒前
Yara完成签到 ,获得积分10
27秒前
27秒前
思维隋发布了新的文献求助10
27秒前
Zero丶小瑞完成签到 ,获得积分10
27秒前
BruceKKKK完成签到,获得积分10
27秒前
林布林完成签到,获得积分10
28秒前
公卫小白发布了新的文献求助10
28秒前
29秒前
舒心以蓝完成签到,获得积分10
30秒前
胡思乱想完成签到,获得积分10
30秒前
充电宝应助零一采纳,获得10
31秒前
石龙子完成签到,获得积分10
32秒前
贪玩的半仙完成签到,获得积分10
33秒前
公卫小白完成签到,获得积分10
34秒前
临水思长发布了新的文献求助10
35秒前
35秒前
lilixia发布了新的文献求助10
38秒前
aZZZ完成签到,获得积分10
39秒前
奋斗洋葱完成签到,获得积分10
40秒前
40秒前
lwg完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999408
求助须知:如何正确求助?哪些是违规求助? 3538753
关于积分的说明 11275049
捐赠科研通 3277597
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810111