User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 电气工程 操作系统
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
bcl完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
slb1319完成签到,获得积分10
刚刚
Yu完成签到,获得积分10
1秒前
彭于晏应助帅b采纳,获得10
1秒前
2秒前
3秒前
4秒前
文静香薇发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI6应助oneday采纳,获得10
4秒前
5秒前
6秒前
6秒前
7秒前
Able_sci发布了新的文献求助10
7秒前
orixero应助Quhang采纳,获得10
7秒前
小熊软糖完成签到,获得积分10
8秒前
8秒前
迪迪发布了新的文献求助10
9秒前
小熊饼干发布了新的文献求助10
10秒前
wwww发布了新的文献求助10
10秒前
luping28完成签到,获得积分10
11秒前
wxzk发布了新的文献求助10
11秒前
msf0073完成签到,获得积分10
12秒前
科研通AI6应助背后的大米采纳,获得30
12秒前
Lucas应助侃侃采纳,获得30
14秒前
14秒前
14秒前
英勇若菱完成签到,获得积分10
14秒前
15秒前
科目三应助宋依依采纳,获得10
15秒前
cc发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573