User repurchase behavior prediction for integrated energy supply stations based on the user profiling method

仿形(计算机编程) 计算机科学 Boosting(机器学习) 能源消耗 梯度升压 随机森林 数据挖掘 人工智能 工程类 电气工程 操作系统
作者
Xiao Cen,Zengliang Chen,Haifeng Chen,Chen Ding,Bo Ding,Fēi Li,Fei Lou,Zhenyu Zhu,Hongyu Zhang,Bingyuan Hong
出处
期刊:Energy [Elsevier]
卷期号:286: 129625-129625 被引量:4
标识
DOI:10.1016/j.energy.2023.129625
摘要

Under the guidance of the "Dual Carbon" goal, integrated energy supply stations have gradually become an essential facility for the energy transition. Promoting user repurchase has become a vital marketing strategy for integrated energy supply station enterprises. This paper proposes a prediction method based on the user profiling method to predict user repurchase behavior accurately. First, using an improved RFM model and the K-means algorithm, this paper constructs user profiles by dividing 10,000 users into three clusters: general-value developmental users, high-value new users, and low-value loyal users. Next, this paper uses the random forest, light gradient boosting machine, and extreme gradient boosting to predict the repurchase behavior of non-clustered users and the three clusters and compares their prediction performance. In addition, this paper adopts the stacking method for model fusion to improve the prediction performance further. The results show that the accuracies of the best prediction models for the three clusters are 93.28 %, 93.68 %, and 92.84 %, respectively. Finally, this paper provides each cluster with the corresponding prediction model of user repurchase behavior and marketing strategy. For the application scenario of integrated energy supply stations, this study accurately predicts the repurchase behavior of each cluster with unique consumption characteristics. It helps to provide personalized services for new energy vehicle consumers, optimize their consumption experience, and facilitate sustainable consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
阿梨完成签到,获得积分20
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
pcr163应助科研通管家采纳,获得10
刚刚
刚刚
pcr163应助科研通管家采纳,获得50
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
Hanoi347应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
18216781882发布了新的文献求助10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得50
刚刚
Hanoi347应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
淡定成风完成签到,获得积分0
1秒前
CodeCraft应助薄荷采纳,获得30
1秒前
1秒前
kuikui1100发布了新的文献求助10
1秒前
脑洞疼应助任乘风采纳,获得10
2秒前
丘比特应助欧阳铭采纳,获得10
2秒前
haha发布了新的文献求助10
2秒前
幽意完成签到 ,获得积分10
2秒前
chengxiaoli发布了新的文献求助10
2秒前
loulan发布了新的文献求助10
2秒前
sky发布了新的文献求助10
2秒前
mm关注了科研通微信公众号
3秒前
科研通AI6应助悦己采纳,获得10
3秒前
椰丝Achi发布了新的文献求助10
4秒前
深情安青应助风中小蕊采纳,获得10
4秒前
莫名完成签到,获得积分10
4秒前
xu完成签到,获得积分10
5秒前
CodeCraft应助李大锤采纳,获得10
5秒前
Twonej应助邓什么邓采纳,获得30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095